Link to full page (citation export, more details):

FACTS: Fast analytical continuum treatment of solvation

Full Text PDF:

PDF icon urshab08.pdf


PDF icon urshab08_s.pdf

U. Haberthür; A. Caflisch

Journal: J. Comput. Chem.
Year: 2008
Volume: 29
Issue: 5
Pages: 701-715
DOI: 10.1002/jcc.20832
Type of Publication: Journal Article

Computer Simulation; Macromolecular Substances; Models, Chemical; Peptides; Protein Conformation; Proteins; Reproducibility of Results; Solubility; Solvents; Static Electricity; Surface Properties; Thermodynamics


An efficient method for calculating the free energy of solvation of a (macro)molecule embedded in a continuum solvent is presented. It is based on the fully analytical evaluation of the volume and spatial symmetry of the solvent that is displaced from around a solute atom by its neighboring atoms. The two measures of solvent displacement are combined in empirical equations to approximate the atomic (or self) electrostatic solvation energy and the solvent accessible surface area. The former directly yields the effective Born radius, which is used in the generalized Born (GB) formula to calculate the solvent-screened electrostatic interaction energy. A comparison with finite-difference Poisson data shows that atomic solvation energies, pair interaction energies, and their sums are evaluated with a precision comparable to the most accurate GB implementations. Furthermore, solvation energies of a large set of protein conformations have an error of only 1.5%. The solvent accessible surface area is used to approximate the nonpolar contribution to solvation. The empirical approach, called FACTS (Fast Analytical Continuum Treatment of Solvation), is only four times slower than using the vacuum energy in molecular dynamics simulations of proteins. Notably, the folded state of structured peptides and proteins is stable at room temperature in 100-ns molecular dynamics simulations using FACTS and the CHARMM force field.