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URS HABERTHÜR, AMEDEO CAFLISCH

Department of Biochemistry, University of Zurich, Winterthurerstrasse 190,

Zurich CH-8057, Switzerland

Received 16 October 2006; Revised 26 June 2007; Accepted 30 July 2007

DOI 10.1002/jcc.20832

Published online 5 October 2007 in Wiley InterScience (www.interscience.wiley.com).

Abstract: An efficient method for calculating the free energy of solvation of a (macro)molecule embedded in a

continuum solvent is presented. It is based on the fully analytical evaluation of the volume and spatial symmetry of

the solvent that is displaced from around a solute atom by its neighboring atoms. The two measures of solvent dis-

placement are combined in empirical equations to approximate the atomic (or self) electrostatic solvation energy and

the solvent accessible surface area. The former directly yields the effective Born radius, which is used in the gener-

alized Born (GB) formula to calculate the solvent-screened electrostatic interaction energy. A comparison with fi-

nite-difference Poisson data shows that atomic solvation energies, pair interaction energies, and their sums are eval-

uated with a precision comparable to the most accurate GB implementations. Furthermore, solvation energies of a

large set of protein conformations have an error of only 1.5%. The solvent accessible surface area is used to approx-

imate the nonpolar contribution to solvation. The empirical approach, called FACTS (Fast Analytical Continuum

Treatment of Solvation), is only four times slower than using the vacuum energy in molecular dynamics simulations

of proteins. Notably, the folded state of structured peptides and proteins is stable at room temperature in 100-ns mo-

lecular dynamics simulations using FACTS and the CHARMM force field.
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Introduction

An accurate treatment of the effects of aqueous solvent in mo-

lecular dynamics (MD) simulations of biological (macro)mole-

cules is of key importance because cells and physiological fluids

consist mainly of water. The exact calculation of the electro-

static energy of a protein in solution requires the evaluation

of the interactions among all solute–solute, solute–solvent, and

solvent–solvent pairs of charges. However, this is computationally

expensive for fully hydrated macromolecules. Despite continu-

ous advances in both the development of parallel MD simulation

code and the performance of ordinary low cost computer pro-

cessors, explicit solvent MD simulations of large proteins lasting

longer than 100 ns are still almost prohibitive. A simplified

treatment that does not require the solvent degrees of freedom

and interaction centers explicitly can be very useful, and for

large systems implicit models represent the only affordable

description of the solvent. For instance, sampling a statistically

significant number of folding and unfolding transitions of struc-

tured peptides at equilibrium require simulations in the 1–10 ls

timescale.1

Despite the significant variability of the dielectric constant in

the interior of a protein molecule,2,3 several implicit solvent

models are based on the assumption that the protein is a uni-

form, low dielectric region. The essential approximation in such

continuum electrostatics models is to represent the solvent as a

featureless high dielectric medium, and the macromolecule as a

region with a low dielectric constant and a spatial charge distri-

bution.4–15 In this way, the solvent degrees of freedom and inter-

action centers are not taken into account explicitly. The Poisson

equation provides an exact description of such a solute/solvent

system. The numerical solution of the finite-difference Poisson

(fdP) equation16–19 is more efficient than the explicit treatment of

the solvent but still not fast enough for effective utilization in

computer simulations of macromolecules.

The generalized Born (GB) model was introduced for an effi-

cient evaluation of continuum electrostatic energies.20 The most

critical aspect of the GB model is the calculation of the effective

Born radii which measure the degree of burial of individual
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solute charges. This measure is combined in a heuristic way to

obtain a correction to the Coulomb law for each atom pair.20 In

contrast to implicit solvation models which use a distance–

dependent screening function,21–23 the GB equation takes into

account the effect of not only the charge–charge distance but

also the degree of solvent exposure of the interacting charges.

Accurate GB implementations published as of today are between

20 and 40 times slower than simulations in vacuo.24 Moreover,

for proteins of about 100 residues the computational cost per

MD time step is about the same for accurate GB models and

explicit water simulations with periodic boundary conditions.25

Water molecules in the liquid state influence the electrostatic

energy of a macromolecule in two ways. They solvate each indi-

vidual charge of the solute (atomic solvation energy), and they

screen the interaction between charge pairs.2,3,26 In a previous

work, we introduced a geometric measure of the degree of burial

of pairs of interacting solute charges for quantifying the screen-

ing effect.27 The aim of the present article is to adopt similar

steric concepts for the efficient evaluation of the effective Born

radius (which is inversely proportional to the atomic solvation

energy) using the local environment of each solute atom and

empirical formulas. The empirical treatment of electrostatics in

FACTS requires five parameters for each atom type (more pre-

cisely, for each value of the van der Waals radius), and the pa-

rameters are optimized by fitting to fdP data. The same geomet-

ric formalism is also proposed for the calculation of the solvent

accessible surface area (SASA) of individual atoms of the solute,

which is used for approximating the nonpolar contribution to

solvation. The resulting continuum model, called FACTS, is a

fully analytical and comprehensive treatment of solvation

effects. A comparison is given with one of the most accurate

GB methods,24 i.e., GB using molecular volume (GBMV25). The

extensive validation provides evidence that FACTS is as accu-

rate as the best available GB implementations, and MD simula-

tions with FACTS are only four times slower than using the

energy in vacuo.

Methods

Generalized Born Model

The GB approach is an empirical formula originally proposed to

approximate the electrostatic contribution to the hydration free

energy of small organic compounds20

DGel;GB ¼ �
s

2

X

N

i;j¼1

qiqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ij þ RiRj expð�r2ij=jRiRjÞ
q (1)

where rij is the distance between charges qi and qj, rii 5 0, the

constant j is usually set to 4 or 8, s ¼ 1

em

� 1

es

, and N is the num-

ber of atoms in the solute. The volume occupied by the solute is

assigned a low dielectric constant em (typically 1, 2, or 4) and

the charge distribution is defined by the partial charges of the

solute atoms. The solvent is replaced by a uniform medium with

a high dielectric constant es (typically 78.5 or 80 in the case of

water). The effective Born radius is defined by

Ri ¼ �
sq2i

2DGel
i

(2)

where DGel
i is the electrostatic solvation free energy of atom i.

For the evaluation of DGel
i in the first generation of GB models,

the Coulomb field approximation was used, where the electric

displacement ~Di for each atom i is calculated by supposing that

the dielectric boundary is spherical and that atom i lies at the

center of this sphere. (Note that this spherical symmetry is only

assumed to calculate ~Di.) A large variety of procedures for cal-

culating effective Born radii within the Coulomb field approxi-

mation have been presented. These include numerical surface or

volume integration,20,25,28–30 analytical integral expression,26 and

pairwise summation approximations.31–33

An important observation is that eq. (1) yields very accurate

results if DGel
i (or equivalently Ri) is a good approximation of the

value obtained by solving the fdP equation.34 Therefore, the most

recent developments of GB models have tried to improve the ac-

curacy of the DGel
i evaluation.12 In particular, corrections to the

Coulomb field approximation have been suggested and shown to

greatly increase the accuracy of the effective Born radii.25,30,35 In

a different approach it was demonstrated that the quantity
ffiffiffiffiffiffiffiffiffi

RiRj

p

can be interpreted as a measure of enclosure of the (i, j) atom

pair and be calculated very efficiently to yield accurate screened

interaction energies.27 The development of FACTS (see next

subsection) was inspired by this measure of enclosure.

Fast Analytical Continuum Treatment of Solvation

In FACTS, the self electrostatic solvation energy and SASA of

individual atoms are calculated using intuitive geometric proper-

ties of the solute whose evaluation requires only solute intera-

tomic vectors. For each solute atom the volume and spatial sym-

metry of its neighboring atoms or, equivalently, of the solvent

displaced by the neighboring atoms, are approximated. A linear

combination with cross-term of these two measures is used as

independent variable of a sigmoidal function (see later). The pa-

rameters of the sigmoidal function, together with those of the

linear combination with cross-term, are derived by fitting to

atomic electrostatic solvation energy values calculated by nu-

merical solution of the fdP equation. The GB formula (1) is

used to obtain the electrostatic solvation free energy of the mac-

romolecule. The FACTS model does not assume the Coulomb

field approximation (see earlier) and does not require to define a

dielectric discontinuity surface. (Such dielectric boundary is only

required to calculate the fdP reference data to which the parame-

ters of the FACTS model are fitted.)

The same two measures of solvent displacement are com-

bined and used in another sigmoidal function to estimate the

SASA of individual atoms. The parameters of the sigmoidal

function are derived by fitting to SASA values calculated by an

exact analytical method.36 Finally, the nonpolar contribution to

the solvation free energy is assumed to be proportional to the

sum of the atomic SASA values.37,38

Both electrostatic solvation energy and SASA are determined

using the same geometrical properties and analytical framework,

which makes FACTS a comprehensive and efficient implicit sol-

vation model.
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Atomic (or Self) Electrostatic Solvation Energy

The essential idea in FACTS is that the electrostatic solvation

free energy of atom i, DGel
i , is evaluated by considering a sphere

of radius R
sphere
i around atom i. The radius is large enough to

neglect effects on DGel
i due to conformational changes outside

the sphere. (More precisely, let DG
el;m
i denote DGel

i being calcu-

lated with the region outside of R
sphere
i occupied exclusively by

atoms of the macromolecule, assuming an infinitely large pro-

tein. Similarly, let DG
el;s
i denote DGel

i being calculated with the

region outside of R
sphere
i occupied exclusively by solvent. Then

the value of R
sphere
i is chosen large enough so that DG

el;s
i

2 DG
el;m
i % 0 holds for any conformation within the sphere.) If

only atom i of the macromolecule were present within the

sphere of radius R
sphere
i , solving the Poisson equation would

result in DGel
i ffi �

sq2i
2rvdW

i

. As more and more atoms are gradually

added (see Fig. 1) DGel
i becomes less favorable depending in a

complex way on where the additional atoms are placed. When

all the solvent has finally been flushed out from within the

sphere, solving the Poisson equation would result in DGel
i % 0.

To quantify the atomic solvation energy, it is useful to inves-

tigate the change in solvation energy upon sequential addition of

solute atoms to the interior of the sphere. Two desolvation path-

ways are shown in Figure 1. In the leftmost column the atom at

the center is completely solvated. In the rightmost column it is

completely desolvated. In proceeding from left to right on the

top or bottom row in Figure 1, more and more atoms surround-

ing the atom at the center are added. Thus, the central atom

becomes more and more desolvated and its solvation energy

DGel
i becomes less and less favorable. The difference between

the two pathways is that on the top pathway, atoms are added so

as to disrupt the spatial symmetry within the sphere, whereas on

the bottom pathway atoms are added so as to preserve the spa-

tial symmetry. Crossing from the asymmetric to the symmetric

pathway in the two intermediate steps in Figure 1, i.e., going

from b to f and c to g, respectively, the number of atoms sur-

rounding the central atom remains constant but they are rear-

ranged such that more solvent close to the central atom is dis-

placed. Thus, the solvation energy of the central atom becomes

less favorable. The following two observations are the core of

the FACTS model. The increase in solvation energy induced by

adding solute atoms (from left to right in Fig. 1) can be

accounted for by the change of a suitably defined measure of

volume. It quantifies the volume occupied by solute atoms with-

in the sphere of radius R
sphere
i . The increase in solvation energy

originating from a rearrangement of solute atoms (from top to

bottom in Fig. 1) can be approximated by the change of a mea-

sure of symmetry, which quantifies the symmetry of the spatial

distribution of the atoms surrounding atom i.

From the previous description it is clear that a measure of

volume or symmetry alone is not appropriate to calculate the

solvation energy of atom i. A fully buried atom (Fig. 1d) and a

fully exposed atom (Fig. 1a) are only marginally discriminated

by the spatial symmetry within the sphere. (However, the latter

situation never arises in proteins since each atom always has

neighbors.) Hence, the number of neighbors is the key differ-

ence. Analogously, the volume occupied by solute atoms within

the sphere is constant in, for instance, snapshots b and f in Fig-

ure 1. Nevertheless, the solvation energy becomes less favorable

by crossing from b to f. In this case the key difference is the

Figure 1. Schematic illustration of the essential concept of the FACTS evaluation of atomic solvation

energy. The large circle in light gray represents the sphere of radius R
sphere
i that is considered to quan-

tify the atomic solvation energy in the FACTS approach (see text). The small circles in dark gray rep-

resent solute atoms that displace the solvent from around the central atom, which is in black. Both

pathways (a ? b ? c ? d and e ? f ? g ? h) proceed from a fully solvated to a fully desolvated

atom. In the top pathway atoms are added such as to break spatial symmetry as much as possible. In

the bottom pathway atoms are added such as to preserve spatial symmetry as much as possible. Cross-

ing from the asymmetric (top) to the symmetric (bottom) pathway in the two intermediate steps, i.e.,

going from b to f or c to g, the number of neighboring atoms remains constant but the solvation

energy of the central atom changes significantly due to the increase in symmetry.
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symmetry. Either of the two measures provides a partial descrip-

tion, but a synergistic combination of the two measures yields a

powerful means to calculate the atomic solvation energy.

To cast the above ideas into a mathematical form, the abbre-

viations ~xij ¼~xi �~xj, rij ¼ j~xijj, and x̂ij ¼
~xij
rij

are introduced. The

measure of volume occupied by the solute around atom i is

defined by

Ai ¼
X

N

j¼1;j6¼i

VjHij (3)

and the measure of symmetry by

Bi ¼

P

N

j¼1;j6¼i

Vj

rij
Hijx̂ij

1þ
P

N

j¼1;j6¼i

Vj

rij
Hij

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(4)

where

Hij :¼

�

1�

�

rij

R
sphere

i

�2�2

rij � R
sphere
i

0 rij > R
sphere
i

8

>

<

>

:

(5)

The measure of volume Ai is simply the sum of the van der

Waals volumes Vj of the atoms surrounding atom i within the

sphere, weighted by Yij. Typically Ai ranges between 100 Å3

and 2000 Å3 in a sphere of radius R
sphere
i % 10 Å.

The measure of symmetry Bi is a weighted Euclidean norm

of the sum of the unit vectors pointing from the central atom i

to the neighboring atoms. Thereby each unit vector is weighted

by Yij, and additionally by the volume of the neighboring atom

Vj it points to, divided by its distance rij from atom i. There is

no other reason for the additional weighting factor Vj/rij except

for the fact that it was found to improve the correlation between

the values of Bi and atomic solvation energies calculated by fdP.

The value of Bi is normalized to range between 0 and 1. For a

fully symmetric distribution Bi 5 0, whereas for a totally asym-

metric distribution (e.g., only one neighboring atom) Bi is close

to 1. The additive constant of 1 in the denominator of eq. (4)

prevents that the denominator becomes zero for a completely

isolated ion.

The purpose of the function Yij is twofold: weighting and

smoothing. Yij is equal to 1 for rij 5 0 and drops continuously

until Yij 5 0 at rij 5 R
sphere
i . Thus, on the one hand Yij accounts

for the fact that the further an atom is placed from atom i, the

less it influences its solvation energy. On the other hand, Yij

ensures the existence of continuous (first and second) deriva-

tives. Note that due to the function Yij the measure of volume

includes a small contribution originating from the symmetry. As

an example, configurations c and g in Figure 1 yield different

values for the measure of volume because of Yij.

Having defined the measure of volume and symmetry, the

next step is to obtain a functional relationship between atomic

solvation energies and the quantities Ai and Bi. The aim is to

find a function prototype with some parameters that can be opti-

mized to reproduce accurately the fdP reference values. At this

point it is important to note that once a function prototype is

found, its parameters have to be optimized separately for each

van der Waals radius of the solute atoms. To explain the impor-

tance of the van der Waals radius one can consider two fully

solvated atoms with differing van der Waals radii. The two

atoms have the same values for the measure of volume (zero)

and symmetry (zero), but their solvation energies are different

and depend on the van der Waals radii according to the Born

formula.

To obtain the desired relationship it is helpful to plot fdP

derived atomic solvation energies DG
el;fdP
i for unit charges

against Ai and Bi in a three-dimensional graph (Fig. 2), classified

in sets according to the van der Waals radii of the corresponding

atoms. For each set a sigmoidal distribution of data is observed.

Therefore, the measures of volume and symmetry are combined

linearly and by a mixed term into a single measure of solvent

displacement

Ci ¼ Ai þ b1Bi þ b2AiBi (6)

and a sigmoidal shaped function of Ci is used to calculate the

electrostatic solvation energy DG
el;FACTS
i of atom i for a unit

charge:

DG
el;FACTS
i ¼ a0 þ

a1

1þ e�a2ðCi�a3Þ
(7)

The parameters a0 and a1 are determined using the limiting

cases of a fully buried and fully exposed atom. In the case of a

fully buried atom (i.e., Ci ? 11) the value of DGel
i should

vanish which implies that a0 5 2a1 and a2 [ 0. For a fully

exposed atom (i.e., Ci ? 0) the Born formula applies so that

a0 ¼ � s
2rvdW

i

ð1þ e�a2a3Þ for a unit charge. Hence, for each van

der Waals radius the five parameters b1, b2, a2, a3, and Rsphere

have to be determined by an optimization procedure. The sig-

moidal function [eq. (7)] gives an accurate fit to DG
el;fdP
i (Fig. 2).

Intuitively, Ci measures the solvent displacement around atom i,

and the solvation energy of atom i is a sigmoidal function of

this measure.

Total Electrostatic Solvation Energy

Using the definition of effective Born radius [eq. (2)] and the

GB formula for the interaction term, the total electrostatic solva-

tion energy in the FACTS model is written as

DGel;FACTS ¼
X

N

i¼1

DG
el;FACTS
i

� s

X

1�i<j�N

qiqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ij þ RFACTS
i RFACTS

j expð�r2ij=jR
FACTS
i RFACTS

j Þ
q ð8Þ

¼ �
s

2

X

N

i;j¼1

qiqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ij þ RFACTS
i RFACTS

j expð�r2ij=jR
FACTS
i RFACTS

j Þ
q (9)

where rii 5 0 and N is the number of atoms in the macromole-

cule. Note that the second sum in eq. (8) implies an infinite

cutoff while a truncation scheme (shifting39) is used in the MD
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Figure 2. The green surface represents eq. (7), i.e., FACTS atomic electrostatic solvation energy as a

function of Ai and Bi for PARAM19 and a van der Waals radius of 1.0 Å (left) and 2.365 Å (right).

The red data points are atomic solvation energy values calculated by fdP using unit charges and em 5 1.

The dependence on the symmetry is more pronounced for the polar hydrogen atoms (left) than the car-

bon atoms (right) because the latter are almost always buried whereas the former show significant

amount of both buried and exposed. Note that a fully symmetric distribution yields Bi 5 0. [Color fig-

ure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 3. Synergistic effect of volume and symmetry terms in FACTS. In the left column only the

measure of volume was used for the FACTS calculations, in the middle column only the measure of

symmetry, and in the right column both measures were combined. Unit charges were used because

they allow for a more stringent comparison that is not affected by the charge parameter set. The

benchmark fdP calculations were performed with em 5 1. The data points of the protein conformations

are in black, while those of the pairs of charged side chains and the N-methyl-acetamide dimer in red

and green, respectively. (Top) Atomic electrostatic solvation energy values calculated by FACTS [eq.

(7)] versus the fdP values for 77,609 atoms from 1082 molecular structures with the van der Waals

radii of PARAM19. (Bottom) Atomic electrostatic solvation energy values calculated by FACTS [eq.

(7)] versus the fdP values for 90,747 atoms from 1073 molecular structures with the van der Waals

radii of PARAM22. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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simulations reported below. Also, a multiplicative factor of

332.0716 is used in front of s for obtaining energy values in

kcal/mol with interatomic distances in Å and partial charges in

electronic units.

Atomic Solvent Accessible Surface Area

Estimating amount and symmetry of the solvent that is displaced

around a given atom provides information on how much the

atom is accessible to solvent. Therefore, the geometric concepts

described earlier for approximating the atomic electrostatic sol-

vation energy can also be used to calculate the SASA. Several

efficient methods that accomplish this task have been suggested

in the past. They mainly use interatomic distances only and do

not take into account symmetry. It has been suggested that

angles between atom triplets could be used,40 but such an

approach is too time consuming. The FACTS approach offers a

straightforward way to approximate the SASA of atom i, Si, by

taking into account the relative positions of the surrounding

atoms. Analogously to eqs. (6) and (7) one can define

Di ¼ Ai þ d1Bi þ d2AiBi (10)

and

SFACTSi ¼ c0 þ
c1

1þ e�c2ðDi�c3Þ
(11)

for the SASA of atom i. The parameters c0 and c1 are deter-

mined using the limiting cases of a fully buried and fully

exposed atom. In the case of a fully buried atom (i.e., Di ?

11) the value of Si should vanish which implies that c0 5 2c1
and c2[ 0. For a fully exposed atom (i.e., Di ? 0) the analyti-

cal formula applies so that c0 5 4p(rvdWi 1 1.4)2(1 1 e2c2c3)

using a probe sphere of 1.4 Å radius. The parameters d1, d2, c2,

and c3, are derived by fitting to exact values of the SASA.36

Total Solvation Free Energy in the FACTS Model

The solvation free energy of a macromolecule is written as the

sum of a polar and a nonpolar term

DGFACTS ¼ DGel;FACTS þ c

X

N

i¼1

SFACTSi (12)

where DGel,FACTS is detailed in eq. (9), and c denotes the empir-

ical surface tension parameter. Values of c 5 0.015 and c 5

0.025 kcal mol21 Å22 were used for the MD simulations pre-

sented in the Results section.

Comparison between FACTS and Other Analytical

Solvation Models

Among the previously published implicit solvation models, those

that can be efficiently employed for MD simulations make use

of a (linear21,23 or sigmoidal41) distance–dependent screening

function instead of a constant dielectric in the denominator of

the Coulomb formula. On the other hand, methods based on the

GB equation (including FACTS) approximate the screening

effects by taking into account not only the charge–charge dis-

tance but also the degree of solvent exposure of individual

charges. Furthermore, ionic groups are neutralized in two of the

three previous models21,23 which are therefore not appropriate

for (poly)peptides with several charged side chains.42 It is im-

portant to note that a direct comparison of the reliability of

GB approaches (including FACTS) and simple models based on

distance-dependent screening function is not possible because of

the different level of physical information and different number

of parameters.43

There are also important differences in the evaluation of

atomic (or self) solvation energy values between FACTS and

other efficient implicit models. The Gaussian solvent-exclusion

model of Lazaridis and Karplus (EEF1)21 and the screened Cou-

lomb potential (SCP) model of Hassan et al.41 do not take into

account the spatial symmetry of the displaced solvent whereas a

symmetry term is explicitely used in FACTS, i.e., eq. (4). Fur-

thermore, EEF1 assumes that the solvation free energy of a pro-

tein is a sum of group contributions and is parameterized with

experimental data of small model compounds whereas atomic

fdP values are used in the parametrization of FACTS. Hence,

the EEF1 solvation energy cannot be decomposed into polar and

nonpolar contributions.

Compared to most GB models, a common advantage of

FACTS, EEF1,21 and SCP41 is that they do not require the defi-

nition of a boundary between solute and solvent. On the other

hand, values of the dielectric constant of solute and solvent have

to be specified in FACTS (and GB models) but not in EEF1 and

SCP. Atomic solvation energies strongly depend on the dielec-

tric constant of the solute em.
43 Yet, the possibility of defining a

solute dielectric constant increases the range of applicability of

FACTS because em 5 1 is more appropriate for MD simulations

while for structure prediction or docking values of em 5 2 or em
5 4 better approximate the effects of fluctuating dipoles in

single-point energy calculations (see also Results and Discussion).

Parameterization of FACTS

Peptides and Proteins

A composite set of structured peptides (1cb3, a b-sheet from

1pgb, an a-helix from 1pgb, 1ly2, and Beta3s44), 18 single-chain

proteins (1a2p, 1bpi, 1crn, 1dvd, 1f8a, 1fmk, 1hdn, 1h0l, 1inc,

1lz1, 1pgb, 1pht, 1shg, 1ubq, 2ci2, 2ptl, 3app, and 3pte), and 6

multi-chain proteins (1kvd, 1ycq, 1ycr, 2ins (chains A and B),

2ins (all chains), and 5hvp) of very different sizes, shapes, and

secondary structure content was used. The number of residues

ranges from 11 in 1cb3 to 347 in 3pte. The set includes almost

spherical geometries with no cavities as well as structures with

internal cavities. For instance, 5hvp is the HIV-1 aspartic pro-

teinase in a complex with a peptidic ligand that was removed

from the active site to obtain an internal cavity. To further

diversify the set of structures with many different kinds of irreg-

ular shapes (cavities, open loops, etc.) the single-chain proteins

were subjected to high temperature unfolding simulations at 450

K for 20 ns with an implicit solvent model.23 From each trajec-

tory a molten globule-like structure and a significantly extended

conformation were selected and added to the initial set of struc-

tures. (For 1bpi only a molten globule-like structure was chosen
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as it is strongly stabilized by three disulfide bridges and did not

unfold sufficiently in the simulation. Similarly, for the very large

complexes 1inc, 3app, and 3pte only a molten globule-like struc-

ture was added as a significantly extended conformation is too

memory demanding for the fdP calculations.) The average

increase in the radius of gyration is 26.1% and 92.2% for the mol-

ten globule like and significantly unfolded structures, respectively.

Their average Ca-RMSD (root mean square deviation) is 13.1

Å and 17.7 Å, respectively. Furthermore, almost completely ex-

tended conformations of the structured peptides were included.

The final training set consists of 81 (PARAM19, see later) and 72

(PARAM22, see later) conformations from 29 peptides and proteins.

Small Molecules

Recently, the potentials of mean force between pairs of charged

side chains have been calculated in explicit water.45 From this

study a total of 12 arrangements originating from 7 molecular

systems were selected: Glu-Glu head to head and orthogonal,

His-Glu orthogonal, Lys-Glu head to head and orthogonal, Lys-

Lys head to head, Arg-Glu head to head, Arg-Lys head to head

and orthogonal, Arg-Arg head to head, orthogonal, and stacked.

The distance was varied from 2.4 to 10 Å resulting in 77 confor-

mations for each pair. Detailed descriptions of the structures and

definitions of the distances are given in.45 Furthermore, 77 con-

formations of the N-methyl-acetamide dimer in a planar arrange-

ment were also considered. Again, the distance between the

hydrogen bond donor and acceptor atoms was varied from 2.4 to

10 Å. The union set of all peptides, proteins, and small mole-

cules consists of 1082 structures (81 protein conformations, 77

3 12 arrangements of pairs of charged side chains, and 77 N-

methyl-acetamide dimer arrangements) derived from 37 molecu-

lar systems (29 proteins, 7 pairs of charged side chains, and the

N-methyl-acetamide dimer). This constitutes a sound basis for a

thorough fitting and assessment of the FACTS model.

Force Field Parameter Set

All calculations were performed using the CHARMM program

(version c29b1) with the CHARMM polar hydrogen parameter

set (PARAM1939) and the CHARMM all-hydrogen parameter

set (PARAM2246). For the PARAM19 set the van de Waals

radii of all hydrogen atoms are set to 1 Å in the fdP, FACTS,

and GBMV calculations. For some computations (e.g., atomic

solvation energies) all atoms are assigned unit charges to allow

for a comparison that is unbiased by the charge parameter set.

Finite difference Poisson (fdP)

The benchmark commonly used to assess the accuracy of contin-

uum electrostatics models are the energy values calculated by

fdP. Atomic solvation energies DG
el;fdP
i and pair interaction ener-

gies were calculated by numerical solution of the fdP equation

with the PBEQ module47 in CHARMM. All atoms were

assigned unit charges for the fdP calculations. A grid spacing of

0.2 Å was used for all fdP calculations with proteins. For the

pairs of charged side chains and the N-methyl-acetamide dimer

a grid spacing of 0.1 Å was used. The van der Waals radii of all

hydrogen atoms were set to 1 Å for PARAM19. No adjustments

were applied to the van der Waals radii of PARAM22. The

dielectric discontinuity boundary was defined by the molecular

surface. The atomic solvation energy DG
el;fdP
i of atom i is the

solvation energy of the macromolecule when deleting the

charges of all atoms except the one of atom i. Solvation energies

were calculated by subtracting the self energy in vacuo (em 5 1,

es 5 1) from the self energy in solution (em 5 1, es 5 78.5).

The interaction energy of an (i,j) atom pair was obtained by calcu-

lating the electrostatic energy of a unit charge at the position of

atom j in the electric field generated by a single unit charge at the

position of atom i in the presence of solvent (em 5 1, es 5 78.5).

Parameter Optimization

For each van der Waals radius two sets of parameters have to be

optimized separately: the five parameters b1, b2, a2, a3, and

Rsphere for the atomic solvation energies, and the four parameters

d1, d2, c2, and c3 for the atomic SASA. Note that an upper

bound of 10 Å was imposed for the optimization of Rsphere. Fur-

thermore, Rsphere was optimized only for electrostatic solvation

energies. For atomic SASA values the Rsphere parameters deter-

mined for the electrostatic solvation are used to increase effi-

ciency in MD simulations as the same list of atom pairs can be

used for the electrostatic solvation energy and SASA. Optimal

parameters were obtained by minimizing the deviations of

DG
el;FACTS
i from DG

el;fdP
i and of SFACTSi from Sexacti . A particle

swarm algorithm48 was used for parameter optimization. The

fdP data from the 81 conformations (of the 29 peptides and pro-

teins listed above) are included in the training set. The data for the

charged side chain pairs and the N-methyl-acetamide dimer are

only used for tests. All parameters are listed in the Suppl. Mat.

It is interesting and useful to assess the dependency of the

FACTS parameters on the training set. The dependency is mar-

ginal because fitting all parameters on a single medium sized

and globular protein (e.g., the native state of barnase (PDB code

1a2p)) yields a parameter set that performs almost as good as

using all 81 protein conformations (Table 1 and Suppl. Mat).

Table 1. Cross Validation of FACTS.

Training set All Native 1a2p

Test set All All but 1a2p

PARAM19

Average 3.4 3.5

SD 3.5 3.5

Max 44.7 47.7

PARAM22

Average 3.3 3.4

SD 3.4 3.5

Max 44.2 43.8

The values are in kcal/mol and represent atomic electrostatic solvation

energy deviations from fdP data calculated with unit charges and em 5

1. In the second column, the training set for FACTS parameter optimiza-

tion is identical to the test set and consists of 81 and 72 protein struc-

tures for PARAM19 and PARAM22, respectively. In the third column,

training and test sets are disjoint; the training set consists of only the

native structure of barnase (1a2p) while the test set consists of all the

remaining structures.
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The only protocol that fails to produce reliable parameters is to

fit only on small or very extended conformations. In both these

cases the radius Rsphere is estimated too small, resulting in a sig-

nificant loss of accuracy for large and compact conformations.

On the other hand, a larger radius does not compromise the ac-

curacy for small or very open structures (but has a negative

effect on the efficiency). In retrospect these findings show that

the data set used in this study to obtain the FACTS parameters

is redundant. Yet, these findings are useful for additional param-

eterizations of the FACTS model (e.g., for CHARMM and em 5

4 or for another force field), which can be done with much less

fdP data and therefore much faster.

Additional evidence for the robustness of the parameters is

provided by a leave-one-out cross-validation procedure using 10

structures. The variation of the values of individual parameters

is much smaller than their value averaged over the 10 models

(Suppl. Mat.) which indicates that the fitting is statistically sig-

nificant.

Molecular Dynamics Simulations

All MD simulations were performed with CHARMM39 starting

from the native structure downloaded from the PDB database.49

Constant temperature MD simulations were carried out using

weak coupling to a Berendsen’s bath with a coupling constant of

5 ps. The CHARMM default truncation schemes of long-range

electrostatics were used, i.e., a shift to zero energy at 7.5 Å and

12 Å for PARAM19 and PARAM22, respectively. The same

cutoff values were employed for the van der Waals energy with

a shifting and polynomial switching function for PARAM19 and

PARAM22, respectively. The SHAKE algorithm was used to fix

the length of the covalent bonds involving hydrogen atoms,

which allows an integration time step of 2 fs. The nonbonding

interactions were updated every 20 fs or using a heuristic update

algorithm for simulations with PARAM19 or PARAM22,

respectively, and coordinate frames were saved every 10 ps for

analysis.

Results and Discussion

This section focuses on the results obtained using an interior

(i.e., solute) dielectric em 5 1. Note that using em 5 1 (instead

of em 5 2 or em 5 4) is the most stringent test of the accuracy

of a continuum dielectric model. For single-point energy calcula-

tions (e.g., for structure prediction or ranking in ligand binding)

Figure 4. Comparison between FACTS and GBMV. The plots show values of the atomic electrostatic

solvation energy evaluated with unit charges and em 5 1. The color coding for different molecular sys-

tems is the same as in Figure 3. (Top) PARAM19: Slope, correlation, and maximal absolute error for

the 60,977 atoms in 81 protein structures are 0.963, 0.980, and 44.7 kcal/mol for FACTS; 0.910,

0.990, and 49.2 kcal/mol for GBMV225; 1.028, 0.998, and 23.0 kcal/mol for GBMVgrid.30 (Bottom)

PARAM22: Slope, correlation, and maximal absolute error for the 62,873 atoms in 72 protein struc-

tures are 0.963, 0.981, and 44.2 kcal/mol for FACTS; 0.967, 0.993, and 56.7 kcal/mol for GBMV2;

1.045, 0.998, and 19.2 kcal/mol for GBMVgrid. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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em 5 2 or em 5 4 would be more appropriate since values of

em > 1 account for thermal fluctuations of protein dipoles. As

the FACTS model is primarily aimed to be used in MD simula-

tions, the validation with em 5 1 is discussed in detail in the

present study. However, parameterizations of the FACTS model

for em 5 2 have also been performed and results are presented

in the Suppl. Mat.

Atomic (or Self) Electrostatic Solvation Energy

It is interesting to assess the gain in accuracy by combining the

measures of volume and symmetry instead of using only either

of them. For this purpose the optimizing procedure for atomic

electrostatic solvation energies was performed three times: by

using both measures [as in eq. (6), i.e., Ci 5 Ai 1 b1Bi 1

b2AiBi], by using only the measure of volume (C̃i 5 Ai 1 b̃1A
2
i

1 b̃2A
3
i ), and by using only the measure of symmetry (Ĉ 5 Bi

1 b̂1B
2
i 1 b̂2B

3
i ). Note that the number of parameters is the

same in all three situations. Plots of atomic solvation energy val-

ues calculated with the three different Ci’s versus fdP values are

shown in Figure 3. Interestingly, the measure of volume yields

more accurate solvation energies than the measure of symmetry

for buried atoms (solvation energy close to zero), whereas the

measure of symmetry is better for solvent exposed atoms (favor-

able solvation energy). This observation provides evidence for

the synergistic effect of combining the two measures. [Note that

for an objective evaluation of the data plotted in Figure 3 the

parameters a0 and a1 in eq. (7) were not fixed because the lim-

ites to determine a0 and a1 cannot be applied for the symmetry

measure alone.]

Figure 4 shows atomic electrostatic solvation energy values

calculated by FACTS [eq. (7)], GBMV2,25 and GBMVgrid30

versus the benchmark fdP values. The numerical approach

GBMVgrid is the most accurate method, followed by GBMV2

and FACTS. However, the maximal absolute error is largest for

GBMV2 because of some significant outliers. Similar behavior

is observed for both PARAM19 and PARAM22.

Atomic Solvent Accessible Surface Area (SASA)

The correlation between SASA values of atoms in protein struc-

tures calculated by FACTS and exact values is 0.96 and 0.97 for

PARAM19 and PARAM22, respectively (Fig. 5). The accuracy

of the GBMV surface algorithm25 is slightly higher than

FACTS, and more so for PARAM19. The largest deviations in

FACTS PARAM19 are observed for atoms with little solvent

accessibility and originate from the relatively large sphere radii

of the carbon atoms, which are close to 10 Å (Suppl. Mat.). It

has to be remembered that the sphere radii were not optimized

ad hoc for the atomic SASA evaluation but set equal to those of

the electrostatic atomic solvation energy for computational effi-

ciency. Large discrepancies are observed mainly for the small

molecular systems, i.e., pairs of charged side chains and the N-

methyl-acetamide dimer, which is also a consequence of the

large sphere radii. Interestingly, both GBMV and FACTS yield

more accurate atomic SASA values than the approach by Hasel

et al.40 (see Suppl. Mat.).

Pairwise Electrostatic Energies and Their Sums

Screened interaction energies, i.e., pairwise energies in solu-

tion,50 are calculated for FACTS, GBMV2, and GBMVgrid by

the formula

Gij ¼
qiqj

�mrij
�

sqiqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ij þ RiRj expð�r2ij=jRiRjÞ
q (13)

where the Born radii Ri are evaluated using the respective mod-

els. The agreement with fdP values is excellent for all three

methods (Suppl. Mat.). For assessment of individual conforma-

tions, e.g., in structure prediction or docking, one is not primar-

ily interested in individual pair interaction energies Gij. The re-

levant quantity is rather the sum over all pairwise energies in-

volving a given solute atom i, i.e., Gi ¼
P

j6¼i

Gij. Accurate

reproduction of Gij in a given model with respect to the fdP val-

ues does not necessarily imply accurate reproduction of Gi since

individual errors may not compensate among each other. A good

agreement with fdP values of Gi is obtained using FACTS

(Suppl. Mat.).

Electrostatic Solvation Energy of Protein Conformations

To assess the accuracy of FACTS in calculating macromolecular

solvation energy a large variety of conformations for 29 proteins

Figure 5. Comparison of atomic SASA evaluation by FACTS (em
5 1 parametrization) and GBMV.25 The benchmark are the exact

values of atomic SASA.36 The color coding for different molecular

systems is the same as in Figure 3. (Top) PARAM19: Slope, corre-

lation, and maximal absolute error for the atoms in the protein struc-

tures are 0.919, 0.955, and 44.2 Å2 for FACTS; 1.001, 0.986, and

14.1 Å2 for GBMV. (Bottom) PARAM22: Slope, correlation, and

maximal absolute error for the atoms in the protein structures are

0.942, 0.970, and 33.2 Å2 for FACTS; 1.001, 0.983, and 14.3 Å2 for

GBMV. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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were generated by 50-ns MD simulations of unfolding at 450 K

using an implicit solvent model.23 Coordinates were saved every

10 ps and all snapshots were sorted according to increasing ra-

dius of gyration (Rg). A total of 100 conformations were chosen

from each trajectory as follows: every 20th conformation from

the 500 snapshots with the lowest Rg (25 conformations), every

20th conformation from the 500 snapshots with the largest Rg

(25 conformations), and every 80th conformation from the

remaining 4000 snapshots (50 conformations). The 100 confor-

mations of each protein cover a wide range of RMSD and Rg.

For the 29 3 100 conformations the values of the electrostatic

solvation energy DGFACTS [eq. (8)], DGGBMV2, and DGGBMVgrid

were calculated and compared to DGfdP.

The results for barnase (1a2p) show that the agreement

between approximated and exact (i.e., fdP) values is very good

for the three models (Fig. 6). As indicated by the percentage

Table 2. Percentage Error of Electrostatic Solvation Energy Values of 2900 Protein Conformations

(100 Conformations from Each of 29 Trajectories).

FACTS, j 5 4 FACTS, j 5 8 FACTS, j 5 12 GBMV2, j 5 8 GBMVgrid, j 5 8

PARAM19

Average [%] 1.96 1.36 1.32 2.37 2.04

SD [%] 1.57 1.25 1.26 1.34 1.31

Max [%] 10.37 11.78 12.21 8.62 8.76

PARAM22

Average [%] 3.33 1.72 1.42 1.28 2.29

SD [%] 1.88 1.20 1.08 1.03 1.48

Max [%] 11.64 7.40 6.97 6.26 7.21

The parameter j is in the interaction term of eq. (8). The benchmark are the fdP values with em 5 1.

Figure 6. Comparison of protein electrostatic solvation energy values calculated by FACTS [eq. (9),

j 5 12] and GBMV. Each plot shows data for 100 conformations of barnase with PARAM19 (top) and

PARAM22 (bottom). The structures were chosen along a high temperature unfolding trajectory started

from the 1a2p X-ray structure. Different symbols discriminate between different ranges of the radius

of gyration. Plus and diamond symbols represent the 25 conformations with small and large radius of

gyration, respectively, while circles the 50 intermediate ones. The benchmark are the fdP values with

em5 1. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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error for all proteins, the accuracy of FACTS improves signifi-

cantly by using j 5 8 instead of j 5 4, while only a marginal

improvement is observed with j 5 12 (Table 2). Notably, with

j 5 12 the percentage error of DGFACTS averaged over all 2900

conformations is only 1.32% and 1.42% with PARAM19 and

PARAM22, respectively. Only with PARAM22 is GBMV2

(with its default value of j 5 825) more accurate than FACTS,

which is probably a consequence of the fact that GBMV2 was

Figure 8. Comparison of relative electrostatic solvation energy values calculated by FACTS (j 5 12)

and GBMV for em 5 1. From each of 29 trajectories, 100 conformations were chosen as described in

the text and the difference in solvation energy (DDG) for all possible pairs of structures was evaluated.

In this way, an eventual systematic offset in solvation energy relative to the benchmark fdP values is

eliminated. Such offset is irrelevant for MD simulations.

Figure 7. Cumulative histogram of percentage errors of electrostatic solvation energy values. The

FACTS eq. (9) with j512 was used for 2900 structures of 29 proteins for PARAM19 (left) and

PARAM22 (right). The benchmark are the fdP values with em 5 1.
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optimized mainly for PARAM22. The cumulative histogram

(Fig. 7) shows that 95% of the 2900 conformations have an

error in the FACTS solvation energy smaller than 3.60% and

3.46% with PARAM19 and PARAM22, respectively.

For most applications of force-field based methods, the cru-

cial quantity is the difference in electrostatic solvation energy

between two structures of the same molecular system, i.e., DDG.

These differences are calculated for all pairs of structures for

each trajectory for FACTS, GBMV2, and GBMVgrid and com-

pared to the fdP values. The results are shown in Figure 8 and

Table 3. FACTS performs almost as well as GBMV2. The

GBMVgrid approach is the most accurate of the three models

but cannot be used for MD simulations because it is a numerical

method. All the three methods show higher accuracy for

PARAM22 than PARAM19. For FACTS, this result is probably

a consequence of the larger number of values of van der Waals

radii (15 in PARAM22 and 7 in PARAM19), while for GBMV

it is due to the aforementioned optimization for PARAM22.

Molecular Dynamics Simulations

FACTS has been implemented into CHARMM version c29b1.

Because of the fully analytical treatment of solvation in FACTS

the total energy does not drift in NVE simulations even with a

time step of 2 fs (Fig. 9), whereas GBMV requires a time step

of 1 fs to reduce the energy drift.51

The native state of structured peptides and proteins is stable over

100-ns MD runs at 300 K (Table 4). Interestingly, the MD results

with FACTS PARAM22 are similar for two different values of the

surface tension-like parameter (g 5 0.015 and g 5 0.025 kcal

mol21 Å22), which indicates robustness with respect to the relative

weighting (i.e., balancing) of polar and nonpolar solvation. Only

1cb3 and 1abz show a Ca-RMSD larger than 3.5 Å after 100 ns

with both values of the parameter g. These findings are consistent

with experimental data. The PDB entry 1cb3 is an ensemble of

NMR conformers of the segment 101–111 of a-lactalbumin, which

is flexible when isolated from the context of the protein. In fact, the

five C-terminal residues of this segment were shown by NMR to be

essentially unstructured in water at 283 K.53 The de novo designed

38-residue a-helical hairpin peptide ata (PDB 1abz) was estimated

to be only 60% helical at 298 K by circular dichroism.54

A common artifact of MD simulations in vacuo is the very

small atomic fluctuations. The RMS fluctuations of the Ca atoms

of chymotrypsin inhibitor 2 (PDB 2ci2) along a FACTS

PARAM22 300 K MD simulation are in agreement with the corre-

sponding values derived from crystallographic B-factors (Fig. 10).

In particular, the N-terminal segment and the loop (residues 38–44)

are the most flexible regions according to both MD simulations

and X-ray data.55 As expected, slightly larger fluctuations are

observed with the smaller of the two values of the surface tension-

like parameter g used for the nonpolar term in the MD simulations.

Using FACTS, the reversible folding to the NMR conformer

has been observed in 1-ls simulations of Beta3s, a designed 20-

residue three-stranded antiparallel b-sheet.44 Moreover, the ther-

modynamic stability (i.e., free energy difference between folded

and denatured state) of Beta3s is lower using FACTS (about 65

and 2% folded population at 300 and 330 K, respectively) than

a simple SASA-based solvation model (about 95 and 50%

folded population at 300 and 330 K, respectively56,57). At 283 K

in vitro, the b-sheet population is 13–31% according to the Nu-

clear Overhauser Enhancements data and 30–55% according to

the chemical shifts.52 The FACTS simulations of Beta3s were

Figure 9. Time series of the total energy relative to the starting

conformation of protein G (1pgb) during 1 ns MD simulation in the

NVE ensemble using FACTS PARAM19 and a time step of 2 fs.

Table 3. Differences in Electrostatic Solvation Energy from Pairs of Protein Conformations (DDG).

FACTS,

j 5 4

FACTS,

j 5 8

FACTS,

j 5 12

GBMV2,

j 5 8

GBMVgrid,

j 5 8

PARAM19

Average 26.91 25.45 25.18 20.04 14.43

SD 36.70 34.99 34.46 26.10 16.70

Max 393 374 367 269 193

PARAM22

Average 17.28 15.89 15.77 13.94 10.39

SD 17.92 16.46 16.25 14.98 10.20

Max 209 180 169 177 122

A total of 29 3 4950 values of solvation energy differences were calculated. All values are in kcal/mol. The

parameter j is in the interaction term of eq. (8). The benchmark are the fdP values with em 5 1.
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performed using PARAM19 with a solute dielectric constant em
5 1 and g 5 0.015 kcal mol21 Å22. An in-depth analysis of re-

versible folding of structured peptides and small proteins will be

presented elsewhere.

FACTS Computational Requirements

Using the same nonbonding cutoff, MD simulations with

FACTS are about four times slower than in vacuo but about 10

times faster than with GBMV2. Notably, on a single Opteron

1.8 GHz processor, a 100-ns MD run of the 46-residue crambin

(1crn) requires 4 and 22 CPU-days with FACTS PARAM19

(396 atoms and 7.5 Å cutoff) and FACTS PARAM22 (642

atoms and 12 Å cutoff), respectively (Table 5). Moreover, the

CPU-time scales linearly with protein size (Fig. 11). The extra

memory requirements for FACTS with respect to a vacuum cal-

culation are marginal and they originate solely from the atom-

pair list, which is used for both electrostatic and SASA calcula-

tions. As an example, with the current implementation of

FACTS into the c29b1 version of CHARMM only 12 Mb of

RAM are needed for FACTS PARAM19 MD simulations of the

389-residue protein b-secretase (PDB 1sgz).

Conclusions

A fully analytical treatment of solvation in the continuum model

has been developed using empirical formulas and fitting to

atomic solvation energy values calculated by numerical solution

of the Poisson equation. The method, called FACTS, is very ef-

ficient because it is based on simple measures of solvent dis-

Table 4. Deviation from the Native Structure During MD Simulations at 300 K.

PDB Residues hi10 hi20 hi30 hi40 hi50 hi60 hi70 hi80 hi90 hi100

1cb3 11 3.5 3.7 4.0 4.1 3.9 4.1 3.8 3.9 4.1 4.1

1l2y 20 1.3 1.1 1.0 1.3 1.1 1.1 1.1 1.1 1.0 1.1

Beta3sa 20 2.0 2.0 2.0 2.4 3.2 3.0 2.4 2.4 2.5 2.4

1f8a 33 1.7 3.4 3.4 3.4 3.4 3.4 3.5 3.4 3.4 3.4

1vii 36 2.2 2.0 2.0 1.9 2.0 1.9 2.0 1.9 1.9 1.9

1abz 38 4.2 3.8 3.6 4.0 4.3 4.2 4.5 4.6 4.5 4.5

1crn 46 0.9 0.9 1.0 1.1 1.5 1.4 1.1 0.9 0.9 0.8

1enh 54 1.6 4.2 4.2 4.1 4.2 4.1 4.1 3.6 3.3 3.3

1pgb 56 1.0 1.0 1.1 1.0 1.2 1.0 1.0 1.0 0.9 1.0

1bpi 58 1.8 1.9 2.1 2.1 2.1 2.2 2.2 2.2 2.3 2.2

1fmk 59 1.7 1.8 1.8 2.2 2.3 2.3 2.3 2.3 2.3 2.3

2ci2 65 2.0 2.3 2.3 2.3 2.4 2.3 2.6 2.5 2.5 2.6

2a3d 73 2.9 3.0 3.2 3.1 3.0 2.8 2.9 2.8 2.9 3.1

1ubq 76 1.4 1.4 1.4 1.9 2.0 2.0 2.0 2.0 2.0 2.0

1pht 83 1.8 2.2 2.1 2.2 2.1 2.2 2.3 2.4 2.4 2.4

1hdn 85 1.9 2.0 1.9 2.0 2.0 2.4 2.6 2.7 2.7 2.6

1a2p 108 2.9 3.2 3.2 3.5 3.9 4.2 4.3 4.3 4.3 4.3

1cb3 11 3.5 4.1 4.0 4.0 4.1 4.1 3.4 3.6 3.6 3.7

1l2y 20 3.8 4.3 4.5 5.0 5.0 5.0 5.0 5.0 4.9 5.1

Beta3sa 20 2.4 3.1 3.0 2.8 2.7 2.8 2.6 2.7 2.7 2.8

1f8a 33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1

1vii 36 2.0 1.9 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9

1abz 38 5.3 6.0 6.3 5.5 5.4 5.5 6.2 6.2 5.9 5.9

1crn 46 0.9 1.0 0.8 0.8 0.9 0.8 0.9 1.0 1.0 1.0

1enh 54 1.5 1.8 2.1 2.4 2.4 2.3 2.3 2.1 1.6 1.6

1pgb 56 0.9 0.9 0.9 1.1 1.1 1.1 1.1 1.2 1.0 1.1

1bpi 58 1.8 2.0 2.1 2.0 2.1 2.0 2.0 2.0 2.0 2.0

1fmk 59 1.3 1.4 1.6 1.8 1.7 1.6 1.6 1.7 1.7 1.7

2ci2 65 2.0 1.9 1.7 1.7 1.9 1.8 1.8 2.1 2.1 2.0

2a3d 73 3.3 3.2 3.3 3.4 3.2 3.2 3.3 3.2 3.3 3.3

1ubq 76 1.4 1.8 2.0 2.0 2.0 2.0 1.9 2.0 1.9 2.0

1pht 83 1.9 2.3 2.5 2.7 3.5 3.5 2.9 2.7 2.8 2.8

1hdn 85 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5

1a2p 108 2.4 2.6 2.5 2.7 2.9 3.0 3.4 3.3 3.3 3.3

Individual columns contain values in Å of the Ca-RMSD from the native structure averaged over 10 ns inter-

vals, e.g., for the last column <>100 the Ca-RMSD was averaged over the 90–100 ns interval. The simula-

tions were performed with FACTS PARAM22, j 5 4, em 5 1.0, and using g 5 0.015 kcal mol21 Å22 (top)

and g 5 0.025 kcal mol21 Å22 (bottom).
aBeta3s is a three-stranded antiparallel b-sheet peptide.44,52
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placement and thus requires only distances between solute atoms

which are close in three-dimensional space. These interatomic

distances have anyway to be calculated for the nonbonding

terms of a force field. FACTS does not use a dielectric boundary

nor does it assume the Coulomb field approximation. The agree-

ment between FACTS and energy values calculated by the fi-

nite-difference Poisson technique is good and comparable to the

one of the most accurate GB methods that use empirical correc-

tions to the Coulomb field approximation. In MD simulations of

proteins FACTS is about ten times faster than the most accurate

GB implementations. The native state of structured peptides and

proteins is stable during 300 K MD runs of 100 ns using FACTS

in combination with the CHARMM force field. Moreover, mar-

ginally stable peptides and unstructured loops in proteins are

flexible under the same conditions. The accuracy and efficiency

of FACTS suggest that it could also be used for protein structure

prediction and docking.
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Figure 10. RMS fluctuations in Å of the Ca atoms of CI2. FACTS PARAM22 was used with em 5 1,

j54, and surface tension-like parameter g 5 0.015 kcal mol21 Å22 (left), and g 5 0.025 kcal mol21

Å22 (right). The fluctuations were extracted from a 300 K simulation started from the native structure

(2ci2) and considering a trajectory segment of 2 ns (dashed line) and 20 ns (solid line). The bold line

with circles represents the fluctuations derived from the crystallographic B-factors55 using the formula

RMS fluctuation 5 (3B/(8p2))0.5.

Table 5. Computation Time Required for 100-ns MD Simulations with

FACTS.

PDB Residues

PARAM19 PARAM22

Atoms CPU-days Atoms CPU-days

1cb3 11 112 0.6 186 3.5

Beta3sa 20 215 2.2 329 8.4

1crn 46 396 3.8 642 21.9

2ci2 65 636 6.6 1076 43.1

1a2p 108 1073 14.5 1700 71.3

All simulations were performed on a single Opteron 1.8 GHz processor.
aBeta3s is a three-stranded antiparallel b-sheet peptide.44,52

Figure 11. System-size scaling of CPU-time required for 100-ns

MD simulations with FACTS. Circles and plus symbols correspond

to simulations with PARAM19 and PARAM22, respectively.
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