In silico discovery of beta-secretase inhibitors
| Title | In silico discovery of beta-secretase inhibitors |
| Publication Type | Journal Article |
| Year of Publication | 2006 |
| Authors | Huang D., Lüthi U., Kolb P., Cecchini M., Barberis A., Caflisch A. |
| Journal | Journal of the American Chemical Society |
| Volume | 128 |
| Issue | 16 |
| Pagination | 5436-5443 |
| Date Published | 2006 Apr 26 |
| Type of Article | Research Article |
| Keywords | Amyloid Precursor Protein Secretases, Electrochemistry, Models, Molecular, Protease Inhibitors |
| Abstract | Alzheimer's disease, the most common amyloid-associated disorder, accounts for the majority of the dementia diagnosed after the age of 60. The cleavage of the β-amyloid precursor protein is initiated by β-secretase (BACE-1), a membrane-bound aspartic protease, which has emerged as an important but difficult protein target. Here, an in silico screening approach consisting of fragment-based docking, ligand conformational search by a genetic algorithm, and evaluation of free energy of binding was used to identify low-molecular-weight inhibitors of BACE-1. More than 300,000 small molecules were docked and about 15,000 prioritized according to a linear interaction energy model with evaluation of solvation by continuum electrostatics. Eighty-eight compounds were tested in vitro, and 10 of them showed an IC50 value lower than 100 μM in a BACE-1 enzymatic assay. Interestingly, the 10 active compounds shared a triazine scaffold. Moreover, four of them were active in an assay with mammalian cells (EC50 < 20 μM), indicating that they are cell-permeable. Therefore, these triazine derivatives are very promising lead candidates for BACE-1 inhibition. The discoveries of this series and two other series of nonpeptidic BACE-1 inhibitors demonstrate the usefulness of our in silico high-throughput screening approach. |
| DOI | 10.1021/ja0573108 |
| pubindex | 0077 |
| Alternate Journal | J. Am. Chem. Soc. |
| PubMed ID | 16620115 |