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Simulations are important for understanding complex reactions, but their interpretation is challenging owing
to the large number of degrees of freedom typically involved. To address this issue, various means for relating
the dynamics of a stochastic system to its structural and energetic features have been introduced. Here, we
show how two leading approaches can be combined to advantage. We use the network of transitions observed
in a reversible folding/unfolding simulation of a 20-residue three-stranded antiparallel �-sheet peptide (beta3s)
to estimate the probabilities of committing to stable states (the native state and major nonnative states), and
these then serve as the basis for an efficient statistical procedure for identifying physical variables that describe
the dynamics. We find that a single coordinate that jointly characterizes the formation of the two native turns
of beta3s can adequately describe the overall folding process, despite its complex nature. Additional features
associated with major pathways leading from individual nonnative states are resolved; indeed, a key result is
an improved understanding of the unfolded state. Connections to other methods for analyzing complex reactions
are discussed.

1. Introduction

Reactions in the condensed phase, especially biomolecular
ones, are typically complex, proceeding by multiple pathways
consisting of many elementary steps. What makes characterizing
these reactions challenging is that many degrees of freedom
participate, and there is no obvious difference between relevant
and irrelevant motions (i.e., ones that do or do not determine
whether the reaction proceeds to completion). Understanding
complex reactions requires experimentally or computationally
probing the underlying free energy landscape, which accounts
for changes in the balance between energy and entropy.
However, any interpretable (and scalable) representation of the
free energy landscape involves grouping, or equivalently
projecting, states. How best to make this grouping remains an
outstanding question in studies of reactions in the condensed
phase. Here, we consider this question from a simulation
perspective.

Work from many groups makes clear that the grouping should
be informed by dynamics. One approach is to harvest many
trajectories that contain the event(s) of interest and then to use
them to identify coordinates that separate transition states from
stable states.1 To avoid biasing the results, the transition states
and stable states are defined by their likelihoods of leading to
products and reactants in additional simulations initiated with
momenta drawn from a Maxwell-Boltzmann distribution (i.e.,
their basin commitment probabilities). To facilitate this analysis,
several statistical methods have been introduced to correlate
commitment probabilities and physical variables.2-6 Surpris-
ingly, the commitment probabilities of seemingly very complex

reactions can be well predicted from only a small number (one
to three) of physical variables; the resulting low-dimensional
projections of the free energy onto those variables have the
advantage that they are readily interpretable.

An alternative approach is to use an equilibrium molecular
dynamics simulation to define a graph in which long-lived states
are represented as nodes and transitions between them are
represented by edges.7-11 Here, the physical variables enter
through the procedure that clusters structures into nodes. Many
variables, including commitment probabilities12,13 and others
based on dynamics,11 can be used for the grouping to minimize
the loss of information. However, when high-dimensional, the
graph can be difficult to visualize. Krivov and Karplus12,13 have
shown that there exists a one-dimensional barrier-preserving free
energy projection. This projection provides a detailed description
of the free energy basins and barriers according to the transitions
in reactive trajectories at equilibrium, but the coordinate is a
partition function, making it less readily interpretable than
geometric or energetic variables.

In the present paper, we seek to relate these two approaches.
To this end, we focus on the folding of a 20-residue antiparallel
�-sheet miniprotein (beta3s). This reaction shares many features
with others in the condensed phase in that the interplay of energy
and entropy is important and the dynamics in the transition state
are diffusive. Beta3s has been extensively studied because it
folds reversibly in atomic-resolution molecular dynamics simu-
lations and has a unique native state but heterogeneous nonnative
states.7,13-17 Attempts to identify geometric coordinates that
describe its folding have failed in the past.17 Our studies begin
with construction of a conformational space network by a long
molecular dynamics simulation. Commitment probabilities,
relative partition functions, and free energy profiles are calcu-
lated on the basis of complex network analysis. Both enthalpic
and entropic basins are identified within the network. Detailed
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information about folding pathways and mechanisms are thus
deduced from the studies.

Here, we exploit the graph to estimate commitment prob-
abilities for the major stable states, and these serve as the input
to a statistical procedure for identifying physical variables that
describe the dynamics. Specifically, we employ the genetic
neural network (GNN) approach, as in ref 18. We find that the
sum of the distances of eight backbone hydrogen bonds is the
most effective reaction coordinate in the overall beta3s folding/
unfolding processes; different reaction coordinates better de-
scribe individual folding pathways, and these coordinates
provide structural insights into the nature of basins within the
unfolded state. The location of the folding free energy barriers
is in agreement with the earlier studies. Although different
folding pathways correspond to different shapes of free energy
profiles, they share almost the same values of free energy
barriers.

2. Methods

The goal of the present study is to show that commitment
probabilities that are obtained by analysis of the network of
transitions in an equilibrium molecular dynamics simulation can
serve as the basis for statistical approaches for automatically
identifying reaction coordinates. In this section, we first review
the network analysis procedure used to estimate the commitment
probabilities. Then we describe the specific method used to relate
commitment probabilities to physical variables and the database
used in the present study. Finally, we describe how we project
the free energy and diffusion constant onto selected coordinates.

2.1. System and Network Analysis. The system we study
is a 20-residue, three-stranded, antiparallel �-sheet peptide,
named beta3s, in an aqueous solution. We represent beta3s with
all its heavy atoms and its polar hydrogen atoms (those bound
to nitrogen or oxygen atoms) and the solvent by the SASA
(solvent accessible surface area) implicit solvation model.14,19

There are 215 atoms in this system. We obtained a total of
20 µs of folding/unfolding trajectories at 330 K (close to the
melting temperature) with the program CHARMM.20 The
SHAKE algorithm was used to fix the covalent bonds involving
hydrogen atoms, and the integration time step was 2 fs. The
structures were saved every 20 ps, for a total 106 structures.

The network of states visited during beta3s folding and
unfolding has been analyzed extensively.7,13-17 The nodes and
links in the network represent configurations and transitions
between them, respectively (Figure 4 of ref 13). To define the
nodes and links, an all-atom rmsd cutoff of 2.5 Å is used.
Starting from a comparison with a representative native
structure, a structure is taken as a new node if its rmsd exceeds
a given threshold (2.5 Å); each subsequent structure is compared
with the contributing structures of existing nodes found so far
and assigned to either an existing node or a new node if its
rmsds with all the existing contributing structures exceed the
threshold.21 By this scheme, the 106 structures generated from
the equilibrium trajectories are grouped into 34 671 nodes with
30 223 pairwise links within nodes and 121 596 links between
different nodes. A link from node j to node i occurs when a
snapshot in node i is followed by a snapshot in node j. As
mentioned above, structures are saved every 20 ps, which makes
the time interval of a link 20 ps. The weight of a node i is
calculated as wi ) ni/N, where ni is the number of structures
within node i and N ) 106. A transition matrix with element nij

equal to the number of links from node i to node j is calculated
as well as the transition probability of node i to node j,
pij ) nij/Σknik, which is to be used in the calculation of
commitment probabilities.

2.2. Estimating Commitment Probabilities. We character-
ize the dynamics of structures with their commitment prob-
abilities. Typically, for a two-state reaction system in which A
and B represent the two stable states, the commitment prob-
ability pB is defined as the likelihood that a structure taken from
a reactive trajectory will commit to basin B prior to basin A in
molecular dynamics simulations initiated with momenta drawn
isotropically from a Maxwell-Boltzmann distribution. From the
above coarse-grained network, we see that the system has a
unique native state but various different nonnative states. Owing
to the heterogeneous nature of the nonnative states, here, the
commitment probability of reaching the folded state, denoted
pfold, is modified to be the likelihood that dynamics trajectories
of 10 ns all starting from one node end with a structure within
2.5 Å all-atom rmsd of the native structure, in keeping with
earlier work.17 A commitment time of 10 ns is chosen because
it is far less than the folding time (0.1 µs) but long enough for
local relaxation. Furthermore, punfold,i, the probability for a
structure to commit to a nonnative state, node i, is calculated
in the same manner with the native state replaced by a nonnative
state, node i, in the above scheme. pfold and punfold,i represent
the probabilities for a structure to undertake folding and
unfolding reactions, respectively. Structures within the same
node are assumed to have the same values of pfold and punfold,i.
To calculate pfold and punfold,i, we solve the equations
pi ) ∑jpij(pj - pj′) for all i iteratively with the boundary condition
pB ) 1 (where B represents either the native state or node i),
where pi is the commitment probability for node i, pij is the
transition matrix element, and pj′ is the probability for node j to
commit to state B at exactly the commitment time (10 ns) later.
In the calculation, we divide the commitment time, 10 ns, into
500 steps (because structures are saved every 20 ps), so that
the commitment probability, pi (the probability of node i to
commit to basin B within 500 steps), is equivalent to the sum
of the product of pij, the probability of node i to transit to an
arbitrary node j in the first step, times (pj - pj′), the probability
of node j to commit to basin B within 499 steps; pj′ is the
probability for node j to commit to basin B at exactly 500 steps.
Solution involves multiplications of the transition matrix and
the weights of the nodes. The Supporting Information of ref 13
provides more details.

To assess the quality of the commitment probability values
calculated by the above procedure, 340 structures (30, 110, and
200 in the folded state, denatured state, and transition state
region, respectively) were selected and their values of pfold were
calculated by the conventional shooting method. A scatter plot
comparing pfold obtained by the conventional method and the
complex network analysis is shown in Figure 1. The comparison
shows that the correlation between pfold from these two methods
is 0.95.17 Therefore, the commitment probability values calcu-
lated by the network procedure are expected to be almost as
accurate as routine direct evaluations.

2.3. Identifying Reaction Coordinates. The idea of statisti-
cal approaches for automatically identifying reaction coordinates
is that a set of representative configurations (or phase space
points) can be used to correlate measures of dynamic behavior
(e.g., commitment probabilities) with physical variables (geo-
metric and energetic features of the system).2 There are now a
number of such procedures that differ in detail (see the
Discussion). We employ the genetic neural network approach,2,18

which was originally developed for elucidating quantitative
structure-activity relationships in medicinal chemistry.22,23 In
this approach, artificial neural networks are used to determine
the functional dependence of the commitment probabilities on
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combinations of physical variables, and then a genetic algorithm
is used to search the input combinations that enable the best
fits (Figure 1 of ref 2). GNN details are given in refs 2 and 18;
we employ the implementation in the program CHARMM
(version 36a1). Default parameters are used, except that in the
genetic function approximation (GFA) model, the number of
generations to reproduce and the number of individual models
in the production pool are set to be 20 and 10, respectively.

The input for the GNN procedure is a database that consists
of commitment probabilities and physical properties for a set

of representative structures. We manually identified as many
structural and energetic variables as we could to characterize
the overall, main chain, and side chain conformations; in total,
there are 593 descriptors (Table 1), which can be categorized
as energy terms, distances, angles, dihedral angles, rmsds from
the representative native structure, solvent accessible surface
areas, and fractions of native contacts. The descriptors along
with the pfold and punfold,i data are used to identify the reaction
coordinates for the overall folding reaction and individual
folding pathways, respectively. The original network analysis
was based on 106 structures, with the distribution of pfold shown
with the histogram in Figure 2. From these structures, we
selected 26 720 with a roughly uniform distribution of pfold,
shown with the horizontal line in Figure 2, to avoid biasing the
neural network toward the stable states. We put 24 720 structures
in the training set and the remaining 2000 in the test set. Both
sets maintain uniform distributions of pfold to avoid biasing the
fit to particular structures. For punfold,i, the number of structures
remaining after structures are removed to obtain a uniform
distribution of commitment probabilities is small (less than
1000). Thus structures were kept in a single set, and Jackknife
cross-validation was used. In both cases, for identifying only
one descriptor as a reaction coordinate, exhaustive enumeration
was used to select descriptors; for the identification of two or
three descriptors, the genetic function approximation was used
because it would be prohibitive to test all 175 528 or 34 579 016
possible models, respectively.

2.4. Calculating Mean First Passage Times and Free
Energy Projections. We obtain free energy projections onto
the reaction coordinates identified for both the overall reaction
and the individual folding pathways. To this end, a new

Figure 1. Comparison of the pfold values calculated by the conventional
shooting procedure shown on the horizontal axis and the complex
network analysis on the vertical axis.

TABLE 1: Physical Variables Forming the GNN Databasea

variable category specific descriptions no. of variables

energy terms solvation energy, VDW energy, electrostatic energy 194
interactions between hydrogen bond atoms of the backbone
interactions between residues
interactions between side chains

distances distances between hydrogen bonding backbone O and H atoms 70
C�-C� distances
CR-CR distances
CR-C� distances
distances between side chains (geometrical centers)
distances between residues (geometrical centers)

angles angles between backbone atoms of different residues 17
dihedral angles φ 195

ψ
�1

�2

ω
other dihedrals between atoms of different residues

rmsd to the native structure rmsd of the whole protein 6
rmsd of side chains
rmsd of backbone

solvent-accessible surface area (ASA) total ASA 41
ASA per residue
ASA per side chain

DSSP angle CRi-2-CRi-CRi+2 63
dihedral angle CRi-1-CRi-CRi+1-CRi+2

cosine of angle between CdO of residue i and CdO of residue i - 1
fraction of native contacts14 hydrogen bond distances + side chain distances 7

a φ, ψ, �1, �2, and ω are dihedral angles Ci-1-Ni-CRi-Ci, Ni-CRi-Ci-Ni+1, Ni-CRi-C�i-Cγi, CRi-C�i-Cγi-Cδi, and
CRi-Ci-Ni+1-CRi+1. DSSP stands for definition of secondary structure of protein. We use the DSSP program ((a) Kabsch, W.; Sander, C.
Biopolymers 1983, 22, 2577-2637. (b) Andersen, C. A. F.; Palmer, A. G.; Brunak S.; Rost, B. Structure 2002, 10, 175-184)) to obtain a
quantitative description of the beta3s secondary structure. In the text, the DSSP variables are categorized into angles and dihedral angles. The
variables in the fraction of native contacts are taken from ref 14.
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conformational space network is generated by grouping the 106

structures according to the identified reaction coordinate instead
of the rmsd. The mean first passage time of each node, denoted
as mfptc, is calculated by iteratively solving the equation: mfpti

) ∆t + Σ(pij × mfptj) with initial boundary condition mfptB )
0, where B represents the node of the native state. ∆t is the
saving interval of 20 ps. The mfpt of a node can be calculated
as the sum of one time step plus the weighted average of the
mfpt values of its adjacent nodes.

Given the new network, the program WORDOM24 is used
to perform the free energy calculations. The main idea is that
the free energy profile can be obtained by concatenating
information about transitions between nodes in the network
ordered to reflect the kinetics. Specifically, at each point along
the free energy profile, the nodes of the network are partitioned
into two groups: A with mfpt < mfptc and B with mfpt > mfptc.
The partition function for group A, ZA ) Σi∈A Zi, where Zi ) Σj

cij is the contribution for node i and cij is the number of
transitions between nodes i and j after detailed balance, is
imposed: cij ) (nij + nji)/2. Given ZAB ) Σi∈A,j∈Bcij, the free
energy of the barrier at mfptc between the two groups A and B
thus can be calculated as -kT log(ZAB/Z), where Z ) Σi Zi is
the partition function for the full network (Figure 1 of ref 13).
Each structure with a specific value of the identified reaction
coordinate corresponds to a specific mfptc and ZA/Z and, thus,
corresponds to a specific free energy value. Therefore, we can
plot the free energy as a function of either the selected coordinate
or the partition-function-like coordinate ZA/Z.

2.5. Calculating Diffusion Constants. The diffusion constant
in the selected coordinates can indicate the extent to which the
free energy profile provides insights into the kinetic behavior.
Because we did not have analytical derivatives for all the
coordinates, we applied the approach put forward by Im and
Roux,25 which is discussed in detail in ref 26. Given q as the
identified reaction coordinate, its diffusion constant is

for ∆q(t) ) q(t + τ) - q(t). If the displacement were driven
purely by Brownian motion, the time interval, τ, could be chosen

arbitrarily. In practice, τ must be sufficiently large to remove
memory effects but not too large, since the analysis leading to
the above expression is based on the assumption of a small time
step. We first recluster the 106 structures according to the
identified reaction coordinate and assume that structures within
the same node have the same diffusion constant. Then the
diffusion constants can be calculated for each node via the above
expression. We set τ to be 20 (the smallest choice which equals
the time interval of structure saving), 40, 60, 200, and 2000 ps
to assess how varying this parameter affects the estimated
diffusion constant. We found that the diffusion constant was
largest at τ ) 20 ps. Thus, we obtain a diffusion constant profile
for the folding reaction at τ ) 20 ps.

3. Results

The goals of the present study are (1) to examine the extent
to which small numbers of physical variables can be used to
capture the dynamics of complex, multipathway reactions and
(2) to illustrate the use of network analysis for estimating
commitment probabilities that serve as inputs to statistical
procedures for identifying reaction coordinates. We consider
commitment probabilities for the overall folding reaction (pfold)
as well as ones for reaching major nonnative states identified
in the equilibrium transition network analysis (punfold). In each
case, we construct a database that consists of the commitment
probabilities of interest and 593 physical variables, as detailed
in the Methods section; we then use the GNN procedure to
identify combinations of one to three descriptors that best predict
the commitment probabilities (as quantified by the rms error
for the test set structures in pfold and for all the structures in
punfold). We compare projections of the free energy onto the
partition-function-like progress coordinate (ZA/Z) on the basis
of two networks: one coarse-grained by the selected coordinates
and the other, by the previous rmsd scheme. The rmsd-based
free energy profile has been argued to be able to preserve basins
and barriers for the folding reaction.13 Free-energy profiles and
diffusion constants projected onto the selected coordinates are
also generated.

3.1. Coordinates for the Overall Folding Reaction. The
NMR structure of beta3s27 is shown in Figure 3, and we take it
as our native reference. Trajectories that reach the native state
(with rmsd from the native structure less than 2.5 Å) within
10 ns contribute positively to pfold. The single coordinate that
is most effective in predicting pfold is the sum of distances
between the H and O atoms of the backbone hydrogen bonds
between residues 3 and 10, residues 5 and 8, residues 11 and
18, and residues 13 and 16. The rms error over the 2000

Figure 2. Distribution of pfold for the original rmsd-based network.
The line indicates the number of structures used to represent each bin
width of 0.025 in pfold in the GNN database (training and test sets
together), which is uniform in pfold by construction.

D ) 〈[∆q(t) - 〈∆q(t)〉]2〉
2τ

Figure 3. Native structure of beta3s with native backbone hydrogen
bonds indicated.
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structures in the test set is 0.177 (Table 2 and Figures 4 and 5);
no significant improvement was obtained with additional
descriptors (Table 2). This error is somewhat higher than that
obtained in previous studies2,18 but is reasonable given the fact
that the commitment probabilities are estimated from the
network rather than calculated directly. The actual error in the
commitment probabilities (relative to what would be obtained
in an infinite number of shooting simulations) sets a limit on
the error in predicting the observed values. Figure 4 is a
graphical comparison of the pfold values input to and output from
the GNN. Figure 5 shows the correlation between the reaction
coordinate and the input/output pfold values.

Since each pair of the aforementioned residues has two
hydrogen bonds, the reaction coordinate is actually the sum of
eight OH distances. We interpret the choice of this coordinate
to mean that the transition states for folding involve formation
of one of the two hairpins. This result is consistent with the
earlier observation7 that there are two main folding pathways:
one with a transition state ensemble characterized by a native-
like C-terminal hairpin and an unstructured N-terminal hairpin
and the other with a native-like N-terminal hairpin and an

unstructured C-terminal hairpin. Indeed, Figure 6 shows rep-
resentative structures with both predicted and observed pfold close
to 0.5 (for TS1, pfold(observed) ) 0.5080, pfold(predicted) ) 0.5034;
for TS2, pfold(observed) ) 0.5190, pfold(predicted) ) 0.5002); repre-
sentatives of the native state and various unfolding states (with
both predicted and observed pfold close to 0) are also shown.
Statistics of this reaction coordinate and the contributing OH
distances for the representative structures in Figure 6 are given
in Tables 3 and 4. Corroborating the importance of forming
these native backbone hydrogen bonds, the eight top-ranked
single-descriptor models are all related variables (Table 2).
Although side chain descriptors were included in the database,
none were selected.

The cut-based free energy profile as a function of the sum of
the eight OH distances is obtained from the equilibrium
transition network as detailed in the Methods section (Figure
7a). We recluster the 106 structures by grouping them into 8169
bins (thus, 8169 nodes) with the bin width 0.01 Å according to
their OH distance sums. There are 1094 pairwise links within
the same nodes and 861 131 pairwise links between different
nodes in the reclustered network. We then can define an
analogous partition-function-like variable, ZA/Z, and perform
the free energy calculation (see section 2.4, Calculating Mean
First Passage Time and Free Energy Projections). Each ZA/Z

TABLE 2: GNN Results for the Overall Reaction Coordinates

database selected coordinatea rms error over 2000 structures

one variable dHB of 3-10, 5-8, 11-18, 13-16 0.1768
dHB of 3-10, 5-8, 11-18, 13-16, 9-20, 1-12 0.1835
dHB of 5-8, 13-16 0.1839
EHB

elec of 3-10, 5-8, 11-18, 13-16 0.1890
EHB of 3-10, 5-8, 11-18, 13-16, 1-12, 9-20 0.1892
EHB

elec of 3-10, 5-8, 11-18, 13-16, 1-12, 9-20 0.1894
dHB of 3-10, 13-16 0.1908
dHB of 5-8, 13-16, 1-12, 9-20 0.1910

combination of two variables Eside-chain
VDW of 3-10, 5-8, 11-18, 13-16, 1-12, 9-20 + EHB of 11-18 0.1834

dside-chain of 3-12, 10-17 + dihedral angle N4-CR4-C�4-Cγ4 0.2158
combination of three variables Eside-chain

VDW of 2-11, 10-19 + dHB of 3-10, 13-16 + sum of angle
CR4-CR6-CR8 and angle CR13-CR15-CR17

0.1858

EHB
VDW of 10-3 + Eside-chain

VDW of 2-11, 10-19 + dHB of 3-10, 13-16 0.1887

a dHB and dside-chain denote the sum of distances between hydrogen bonding backbone O and H atoms and between the geometric centers of
side chains, respectively. EHB, EHB

elec, Eside-chain
VDW , and EHB

VDW are energy terms. HB and side chain subscripts denote hydrogen bond and side chain
interactions, respectively; elec and VDW superscripts denote the electrostatic and van der Waals parts of the energy function.

Figure 4. Comparison of the pfold values input to and output from the
GNN for the 2000 structures in the test set for the highest ranked model
based on dHB of 3-10, 5-8, 11-18, 13-16, the sum of distances
between the H and O atoms of the backbone hydrogen bonds between
residues 3 and 10, residues 5 and 8, residues 11 and 18, and residues
13 and 16.

Figure 5. Dependence of pfold on the coordinate yielding the best
prediction, dHB of 3-10, 5-8, 11-18, 13-16 (see text and caption to
Figure 4).
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corresponds to a specific node that is defined by its value of
the reaction coordinate; we thus obtain the free energy projection
onto the sum of the eight OH distances. We see that a broad,
unfolded basin and a narrow, folded basin are separated by a
barrier of ∼1 kcal/mol. The position-dependent diffusion
constant along this coordinate varies over a range of ∼1 Å2/ps
(Figure 7b), which suggests that the kinetics can be meaningfully
interpreted in terms of the free energy profile.

The earlier network analysis centered on ZA/Z based on the
rmsd coarse-grained network. For reference, the rms error for
a neural network fit of pfold to the rmsd (all referring to the
representative native structure) yields a rms error of 0.195. To
facilitate comparison with the earlier work,13 we also reorder
the network according to the sum of the eight OH distances
and then obtain the free energy projection onto the OH-
distances-based ZA/Z (Figure 8). The free energy barrier to
folding appears at almost the same place; that is, at ZA/Z )
0.38, which indicates that the native basin is identified correctly.

In contrast, the height of the barrier is ∼1.0 kcal/mol lower
using the OH distances sum for coarse-graining than the result
in ref 13. It is important to note that differences in the cut-
based FEP after the first barrier (at ZA/Z ) 0.38 in Figure 8)
are expected because of the overlap of structures after the first
barrier; that is, different structures with the same kinetic distance
from the folded state12,13 that originate from parallel folding
pathways. From Table 3, we can see that although the value of
the reaction coordinate for the native state is at around 20 Å,
the unfolded state covers the range from 54 to 76 Å. These
numbers are in agreement with the range of the plateau in
Figure 7.

Finally, with regard to the network reclustered by the sum
of the OH distances, we examined whether the reclustered
network could be used to improve the pfold estimates. However,
we found that the majority of structures were assigned 0.2 <
pfold < 0.4 with the commitment time set to be 10 ns (data not
shown). This narrow range results from the fact that the selected
coordinate groups different transition states and different
unfolded states together, so there is a loss in information relative
to the rmsd-based network, consistent with the smoothing of
the free energy profile in Figure 8.

Given the apparent importance of the eight OH distances in
the turns, we also trained an artificial neural network (with an
8-2-1 input-hidden-output topology) to predict pfold from
these data directly. The resulting rms error was 0.162, the best
accuracy that we achieved throughout the study. We also
reclustered the 106 structures such that each node contained

Figure 6. Representative structures for the overall folding/unfolding reaction. Non-native states 1, 4, and 5 are extended states; nonnative states
2 and 3 are misfolded states.

TABLE 3: Statistics of dHB of 3-10, 5-8, 11-18, 13-16a

sum of H-bond
distances (Å) no. of structures av SD

native state ensemble 288029 19.597 2.511
transition state ensemble 6413 43.502 9.489
nonnative state ensemble 381694 65.165 10.983

a Structures with pfold < 0.01, pfold ∈ (0.495, 0.505), and pfold >
0.99 based on the rmsd coarse-grained network are selected to form
ensembles of the nonnative state, transition state, and native state.

TABLE 4: Changes of Key Hydrogen Bond Distances during the Reaction

representative nonnative statesa

distance (Å) native TS 1 TS 2 1 2 3 4 5

3H-10O 2.293 8.790 1.847 7.928 9.607 9.356 10.746 13.236
3O-10H 1.960 7.459 1.833 9.114 10.052 10.899 11.301 10.461
5H-8O 2.118 8.292 2.247 9.977 10.854 9.898 11.005 6.784
5O-8H 2.278 6.522 5.630 6.945 6.759 6.580 7.898 5.941
11H-18O 1.970 1.972 7.457 15.840 10.340 9.182 13.385 14.026
11O-18H 2.186 2.264 7.736 14.188 10.237 12.686 7.948 10.390
13H-16O 1.999 1.969 7.416 10.237 9.593 10.608 8.156 8.604
13O-16H 2.095 2.118 5.422 6.561 7.421 7.556 4.118 5.652
sum 16.899 39.386 39.588 80.790 74.863 76.765 74.557 75.094

a The representative nonnative states are shown in Figure 6.
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structures in which each of the eight distances were all within
a single bin of width 3 Å (62 601 nodes). This tended to obscure
the barriers to folding (data not shown), which suggests that
transition states and stable states were grouped together by this
procedure. Unfortunately, there were insufficient statistics to
make the bin width significantly smaller, and thus, the homo-
geneity of structures within nodes could not be ensured.

We then designed another scheme to recluster the 106

structures that coarse-grained both the eight OH distances and
their sum. Figure 9 shows the distributions of each OH distance.
For each distribution, there is a trough at around 4.2 Å after
the native-state peak. Setting the width of the trough to be 2 Å,
we could then divide each distribution into three sections: before
the trough (as in the native state), within the trough (as in the
transition state), and after the trough (as in the unfolded state).
We reclustered the structures according to these sections of the
eight OH distributions and then grouped the structures into bins
of width 1 Å according to their OH distance sums. A total of
23 217 nodes are generated by this hybrid scheme, and the free
energy projection is again obtained (Figure 8). We see that this
free energy projection provides richer information as compared
with that obtained from the network reclustered using only the
sum of OH distances. It is also in good agreement with the
rmsd coarse-grained network in that it presents similar shapes
and heights of free energy barriers around the transition state
region. We were thus able to exploit the higher information
content of the individual distances for procedures that coarse
grained both the single OH distances and their sums.

To put the work in context, as previously suggested, no single
hydrogen bond distance or sum of distances within only one
hairpin is the most effective reaction coordinate. Also consistent
with previous results,17 QN and QC, the fractions of native
contacts within the N hairpin and C-terminal hairpins, yield
relatively large rms errors of 0.203 and 0.228, respectively.
However, the GNN procedure was able to identify the sum of
the eight OH distances in the turns as a reasonable descriptor
of the dynamics. To further verify the effectiveness of this
coordinate, we calculated pfold

MSM, the folding probability corre-
sponding to a Markov state model, as defined in ref 17. As
discussed in that study, pfold

MSM is very sensitive to the definition
of the unfolded state. Here, we took the folded state to be
structures with sums less than 20 Å and the unfolded state to
be structures with sums more than 60 Å. The resulting
distribution of pfold

MSM shown in Figure 10 reflects the barrier

Figure 8. Comparison of cut-based free energy projections obtained
from networks in which structures are grouped by rmsd (blue triangles),
dHB of 3-10, 5-8, 11-18, 13-16 (red circles), and combination of
individual OH distances and their sum (black squares).

Figure 7. Thermodynamics and kinetics as a function of dHB of 3-10,
5-8, 11-18, 13-16. (a) Free energy. Polynomial fitting was used to
reduce statistical variation. (b) Position-dependent diffusion constant
evaluated with τ ) 20 ps (see text).

Figure 9. Distributions of each OH distance of 3-10, 5-8, 11-18,
13-16.
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region better than the distribution in Figure 7 of ref 17, which
was obtained with basin definitions based on the fraction of
native contacts (which gives a rms error of 0.216 for commit-
ment probability predictions). This suggests that the sum of eight
OH distances in the turns serves as a good coordinate for
describing the overall reaction, at least in part because it is robust
to the heterogeneity of the unfolded state.

3.2. Reaction Coordinates for Individual Folding Path-
ways. In addition to the native state, there are nine nonnative
states identified in the earlier network analysis of beta3s folding
and unfolding (see Figure 7 of ref 13). Direct transitions between
these nine nodes of the network are rare as compared with
transitions connecting each node to the native state. It is thus
inferred that different reaction pathways exist in the beta3s

system, distinguished by their nonnative states. In this study,
we select the three most populated pathways for a detailed
analysis; for the rest of the pathways, there are not enough data
to generate a uniform distribution of commitment probabilities
for the GNN procedure.

The unfolded structures of the three pathways are shown in
Figure 11. All of them are states with one of the two hairpins
misfolded. The transition states in pathways 2 and 3 belong to
the TS1 ensemble in Figure 6; the transition state in pathway 1
belongs to the TS2 ensemble. A set of punfold,i (i ) 1, 2, 3), the
probabilities for each structure to commit to each unfolding state,
are calculated. Ideally, if a structure is within a pathway i, it
must satisfy the condition pfold + punfold,i ) 1. However, because
the pfold and punfold calculations are performed independently on
the basis of statistics of the network, the sum of these two
commitment probabilities can exceed 1, and we group snapshots
with pathway i (i ) 1, 2, 3) when (pfold + punfold,i) ∈ (0.8, 1.2).
We then select structures to form roughly uniform distributions
of pfold and punfold,i which lead to three databases of 924, 436,
and 872 structures for nodes 1, 2, and 3, respectively; the
physical variables are the same as above.

The descriptors selected are listed in Table 5. Two sets of
GNN calculations are performed: one with punfold,i as a single
target parameter; the other with both punfold,i and pfold as target
parameters. A graphical comparison of the punfold,i values input
to and output from the GNN for the single-target-parameter set
is shown in Figure 12. Since many fewer structures are used in
the GNN procedure, the rms errors are larger than those obtained
for the overall pathway. The results illustrate that different
pathways are best described by different coordinates. For nodes
1 and 3, dihedral angles are selected; for node 2, the most highly
ranked descriptor monitors interactions within a hairpin. To
interpret these choices, we show representative transition states
in Figure 11 and free energy projections in Figure 13. The
dihedral angles in pathways 1 and 3 are located near the turns
of hairpins 2 and 1, respectively. They change from native
structures to nonnative ones as the hairpins misfold. Pathway 2
involves the change of hydrogen bond distances and side chain

Figure 10. Distribution of pfold
MSM (black symbols, right axis) calculated

with dHB < 20 Å for the folded state and dHB > 60 Å for the unfolded
state. The distribution is superimposed on the cut-based free energy
projection (red symbols, left axis) from the original complex network.
The distribution of intermediate values of pfold

MSM is narrower than in
Figure 6 of ref 17, indicating that the use of dHB of 3-10, 5-8, 11-18,
13-16 to define the stable states is an improvement over the use of
the number of native contacts.

Figure 11. Representative backbone structures from folding/unfolding pathways leading between the native state and three major nonnative nodes.
The beads shown in the structures of pathways 1 and 3 indicate the atoms contributing to the dihedral angles that are selected by the GNN (see
Table 4). For pathway 2, the native backbone hydrogen bonds that contribute to the GNN-selected coordinate are marked.
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distances within the entire hairpin 1. All the unfolding pathways
involve the breaking of native hydrogen bonds, which confirms
the importance of hairpin zipping. The fact that the barriers are
comparable in the different pathways follows directly from the
fact that they are all observed during folding and unfolding.
Indeed, it is the competition between these pathways that makes
the beta3s folding reaction complex.

4. Discussion

We have combined complex network analysis with a statisti-
cal procedure that relates commitment probabilities to physical
variables to identify reaction coordinates for the beta3s folding
reaction. This is a challenging system for description in that
the dynamically defined transition states are relatively hetero-
geneous in nature. One might thus expect that interpretable
reaction coordinates could not be found.21 However, we obtain
good prediction of commitment probabilities with a coordinate
that tracks the formation of eight backbone hydrogen bonds,
which are close to the turns in beta3s. Analysis of the
contributing hydrogen bonds indicates that there are two
structurally distinct transition state ensembles, each of which
corresponds to nucleation of the folding reaction from one of
the turns. This result is consistent with previous studies.14 We
have performed analogous studies for separate pathways identi-
fied during the complex network analysis. Different pathways
are found to be best described by different coordinates, but the
barriers to folding along the pathways are all comparable, as
one would expect from the fact that all these pathways contribute

significantly to the dynamics. The studies of individual pathways
were facilitated by the fact that we were able to obtain the
probabilities for commitment to different nodes from the same
equilibrium molecular dynamics data; in this sense, the method
employed here for estimating commitment probabilities has a
significant advantage over the conventional procedure.

Complex networks13 and free energy disconnectivity graphs
(FE DG)28 are useful representations of dynamics in that they
preserve free energy barriers. The essential element of these
approaches is that free energy basins and barriers are elucidated
from transitions observed at equilibrium rather than from
geometrical features. However, structures must be clustered to
obtain transition statistics. Rao and co-workers8 have shown that
the optimal partition of the network into free energy basins is
not obvious; in fact, different clustering algorithms detect
different free energy basins. In our study, root-mean-square
deviations (rmsd) between pairs of structures were used as the
basis for grouping structures into nodes. Although this variable
itself correlates poorly with commitment probabilities, it appears
adequate for the purpose of clustering beta3s conformations in
that most of the resulting nodes have small ranges in the physical
coordinates ultimately identified as important. At the same time,
large ranges were observed for a fraction of nodes such that
we would expect the structures within these nodes to have
heterogeneous commitment probabilities. As shown, schemes
that incorporate the selected coordinates to recluster the simula-
tion data can lead to improvements.

The idea of using statistics from an equilibrium molecular
dynamics simulation for identifying coordinates capable of
distinguishing dynamically defined transition states was first
suggested by Best and Hummer.3 They used a Bayesian
approach to relate the equilibrium probability of observing
particular values for a candidate physical variable to the
probability of being on a transition path given those values and
sought to maximize the peak height of a Gaussian fit to the
latter. Independently, Ma and Dinner2 suggested that one could
efficiently search for combinations of coordinates that gave good
prediction of commitment probabilities by statistical analysis
of a database of candidate physical variables and precomputed
commitment probabilities for a set of representative structures.
Their key insight was to decouple the evaluation of the
commitment probabilities from the testing of candidate variables.
Their procedure thus obviated the traditional histogram test in
which one harvested new putative transition states for each
candidate set of coordinates and evaluated whether the distribu-
tion of their commitment probabilities was peaked at a value
of one-half.

The specific statistical approach that Ma and Dinner em-
ployed, the genetic neural network, which was also employed
here, was introduced originally for elucidating quantitative

TABLE 5: GNN Results for Unfolding to Major Nonnative Nodesa

pathway pfold as target rms error punfold,i and pfold as targets rms error

1 CR14-CR15-CR16-CR17 0.1851 CR14-CR15-CR16-CR17 0.2384
C�15-CR15-CR16-C�16 0.1883 C�15-CR15-CR16-C�16 0.2412
N15-C15-CR15-N16 0.1922 N15-C15-CR15-N16 0.2437

2 q12 0.1815 q12 0.2294
dHB of 5-8, 11-18 0.1895 dHB of 5-8, 11-18 0.2444
CR4-CR5-CR6-CR7 0.1898 CR4-CR5-CR6-CR7 0.2457

3 CR3-CR4-CR5-CR6 0.1842 dside-chain of 4-9 0.2278
C�4-CR4-CR5-C�5 0.1874 Eside-chain

VDW of 4-9 0.2312
dside-chain of 4-9 0.1901 Eside-chain of 4-9 0.2324

a CR14-CR15-CR16-CR17 denotes the dihedral angle between the CR atoms of residue 14, 15, 16, and 17. Other dihedral angles are denoted
in the same way. q12 denotes the fraction of native contacts within the N-terminal hairpin.

Figure 12. Comparison of the pfold values input to and output from
the GNN for the coordinates identified as describing unfolding to major
nonnative nodes (see Table 5 and Figure 11).
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structure-property relationships.22,23 In the GNN approach,
artificial neural networks are used to fit commitment prob-
abilities in terms of combinations of descriptors, and a genetic
algorithm is then used to select the combinations that enable
the best fit. Peters and Trout subsequently suggested likelihood

maximization4 as an alternative to the GNN (see discussion of
the relation of the two methods in ref 5 and the Methods section
of ref 18).

Likelihood maximization has the advantage that the measures
of statistical significance are better defined, but the relative
performance of the two methods in practical applications
remains open to debate. Recently, Antoniou and Schwartz6

presented a new approach to the identification of reaction
coordinates by locating the transition state ensemble, defined
as the stochastic separatrix, and examining the distributions of
candidate coordinates on the separatrix. Their approach is
conceptually transparent in that coordinates that are components
of the reaction coordinate should have a significantly smaller
variation along the separatrix, but it is restricted to systems
without diffusive transition states. The GNN is the only tested
approach that permits importance sampling (rather than exhaus-
tive enumeration) of combinations of descriptors and nonlinear
commitment probability dependencies, which appear to be quite
common.

Peters and Trout additionally introduced aimless shooting,
which enables binary estimates of commitment probabilities to
be obtained during a transition path sampling simulation.4 In
systems that permit shooting and have only a single dominant
reaction pathway,29 aimless shooting is likely to provide
significant computational savings. For the strongly diffusive
system considered in the present study, we do not expect that
to be the case. In particular, limiting the range of points for
shooting could slow exploration of the space of trajectories in
directions orthogonal to a reaction pathway. For beta3s, the
existing equilibrium data13 obviated the need for further mo-
lecular dynamics simulations and permitted reasonably accurate
estimates of commitment probabilities to be obtained. It is
important to stress that the means of constructing the database
of commitment probabilities and the statistical method used to
analyze it are separate choices, despite the fact that they have
been touched on jointly by Ma and Dinner2 and Peters and
Trout,4 as well as in the present study. The complementarity
between complex network analysis and the GNN makes
combining them a very promising approach for studying
complex reactions.
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