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The assumption that similar structures have similar folding probabilitiesspfoldd leads naturally to a
procedure to evaluatepfold for every snapshot saved along an equilibrium folding-unfolding
trajectory of a structured peptide or protein. The procedure utilizes a structurally homogeneous
clustering and does not require any additional simulation. It can be used to detect multiple folding
pathways as shown for a three-stranded antiparallelb-sheet peptide investigated by implicit solvent
molecular dynamics simulations. ©2005 American Institute of Physics. fDOI: 10.1063/1.1893753g

I. INTRODUCTION

The folding probabilitypfold of a protein conformation
saved along a Monte Carlo or molecular dynamicssMDd
trajectory is the probability to fold before unfolding.1 It is a
useful measure of kinetic distance from the folded, i.e., func-
tional state, and can be used to validate transition state en-
semblesTSEd structures, which should havepfold<0.5. Such
validation consists of starting a large number of trajectories
from putative TSE structures with varying initial distribution
of velocities and counting the number of those that fold
within a “commitment” time which has to be chosen much
longer than the shortest time scales of conformational fluc-
tuations and much shorter than the average folding time.2

The concept ofpfold calculation originates from a method for
determining transmission coefficients, starting from a known
transition state3 and the identification of simpler transition
states in protein dynamicsse.g., tyrosine ring flipsd.4 The
approach has been used to identify the otherwise very elusive
folding TSE by atomistic Monte Carlo off-lattice simulations
of small proteins with aGō potential,2,5 as well as implicit
solvent MD sRefs. 6 and 7d and Monte Carlo8 simulations
with a physicochemical based potential. The number of trial
simulations needed for the reliable evaluation ofpfold makes
the estimation of the folding probability computationally
very expensive. For this reason, here we propose a method to
estimate folding probabilities forall structures visited in an
equilibrium folding-unfolding trajectory without any addi-
tional simulation.

II. METHODS

A. Molecular dynamics simulations

Beta3s is a designed 20-residue sequence whose solution
conformation has been investigated by NMR spectroscopy.9

The NMR data indicate that beta3s in aqueous solution forms
a monomericsup to more than 1 mM concentrationd triple-
stranded antiparallelb sheet, in equilibrium with the dena-
tured state.9 We have previously shown that in implicit
solvent10 molecular dynamics simulations beta3s folds re-

versibly to the NMR solution conformation, irrespective of
the starting structure.11 Recently, four molecular dynamics
simulations of beta3s were performed at 330 K for a total
simulation time of 12.6ms.12 There are 72 folding events
and 73 unfolding events and the average time required to go
from the denatured state to the folded conformation is 83 ns.
The 12.6ms of simulation length is about two orders of mag-
nitude longer than the average folding or unfolding time,
which are similar because at 330 K the native and denatured
states are almost equally populated.12 For thepfold analysis
the first 0.65ms of each of the four simulations were ne-
glected so that along the 10ms of simulations there are a
total of 500 000 snapshots because coordinates were saved
every 20 ps.

The simulations were performed with the program
CHARMM.13 Beta3s was modeled by explicitly considering all
heavy atoms and the hydrogen atoms bound to nitrogen or
oxygen atomssPARAM19 force field13d. A mean field ap-
proximation based on the solvent accessible surface was used
to describe the main effects of the aqueous solvent on the
solute.10 The two surface-tension-like parameters of the sol-
vation model were optimized without using beta3s. The same
force field and implicit solvent model have been used re-
cently in molecular dynamics simulations of the early steps
of ordered aggregation,14 and folding of structured
peptides,10,11as well as small proteins of about 60 residues.15

Despite the absence of collisions with water molecules, in
the simulations with implicit solvent the separation of time
scales is comparable with that observed experimentally. He-
lices fold in about 1 ns,16 b hairpins in about 10 ns,16 and
triple-strandedb sheets in about 100 ns,12 while the experi-
mental values are,0.1 ms,17 ,1 ms,17 and ,10 ms,9 re-
spectively.

B. Clusterization

The 500 000 conformations obtained from the simula-
tions of beta3sssee aboved were clustered by the leader
algorithm.18 Briefly, the first structure defines the first cluster
and each subsequent structure is compared with the set of
clusters found so far until the first similar structure is found.
If the structural deviationssee belowd from the first confor-
mation of all of the known clusters exceeds a given thresh-
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old, a new cluster is defined. The leader algorithm is very
fast even when analyzing large sets of structures such as in
the present work. The results presented here were obtained
with a structural comparison based on the distance root mean
squaresDRMSd deviation considering all distances involving
Ca and/or Cb atoms and a cutoff of 1.2 Å. This yielded
78 183 clusters. The DRMS and root mean square deviation
of atomic coordinatessupon optimal superpositiond have
been shown to be highly correlated.2 The DRMS cutoff of
1.2 Å was chosen on the basis of the distribution of the
pairwise DRMS values in a subsample of the wild-type tra-
jectories. The distribution shows two main peaks that origi-
nate from intracluster and intercluster distances, respectively
sdata not shownd. The cutoff is located at the minimum be-
tween the two peaks. The main findings of this work are
valid also for clusterization based on secondary structure
similarity.7,19

C. Folding probability

For the computation ofpfold a criterionsFd is needed to
determine when the system reaches the folded state. Given a
clusterization of the structures, a natural choice forF is the
visit of the most populated cluster which for structured pep-
tides and proteins is not degeneratesother criteria are also
possible, e.g., fraction of native contactsQ larger than a
given thresholdd. GivenF and a commitment timestcommitd,
the folding probabilitypfoldsid of a MD snapshoti is com-
puted as1,2

pfoldsid =
nfsid
ntsid

, s1d

where nfsid and ntsid are the number of trials started from
snapshoti which reach within a timetcommit the folded state
and the total number of trials, respectively.

Every simulation started from snapshoti can be consid-
ered as a Bernoulli trial of a random variableu with value 1
sfolding within tcommitd or 0 sno folding within tcommitd. The
variable u has average and variance on the average of the
form

kul = pfold =
1

nt
o
i=1

nt

ui ,

s2d

skul
2 =

1

nt
pfolds1 − pfoldd,

wherent is the total number of trials and the accuracy on the
pfold value increases withnt.

In Fig. 1 the distribution of the first passage timesfptd to
the folded state is shown. The double peak shape of the
distribution provides evidence for the different time scales
betweenintrabasin andinterbasin transitions. A value of 5 ns
is chosen fortcommit because events with smaller time scales
correspond to the diffusion within the native free-energy ba-
sin, while events with larger time scales are transitions from
other basins to the native one, i.e., folding/unfolding
events.12

III. FOLDING PROBABILITY FROM EQUILIBRIUM
TRAJECTORIES

The basic assumption of the present work is that confor-
mations that are structurally similar have the same kinetic
behavior, hence they have similar values ofpfold. Note that
the opposite is not necessarily true as explained in Sec. IV
for the TSE and the denatured state. To exploit this assump-
tion, snapshots saved along a trajectory are grouped in struc-
turally similar clusters.20 Then thetcommit segment of MD
trajectory following each snapshot is analyzed to check if the
folding conditionF is met si.e., the snapshot “folds”d. For
each cluster, the ratio between the snapshots which lead to
folding and the total number of snapshots in the cluster is
defined as the cluster −pfold sPf

C; throughout the text upper-
caseP and lowercasep refer to folding probability for clus-
ters and individual snapshots, respectivelyd. This value is an
approximation of thepfold of any single structure in the clus-
ter which is valid if the cluster consists of structurally similar
conformations. In other words, the occurrence of the folding
event for the snapshots of a given cluster can be considered
as a Bernoulli trial of a random variableu. The average ofu
and variance on the average for the set of snapshots belong-
ing to a given clustera can be written as

Pf
Cfag = kul =

1

W
o
i=1

W

ui, i [ a,

s3d

skul
2 =

1

W
Pf

Cs1 − Pf
Cd,

whereW is the number of snapshots in clustera. Pf
C is the

average folding probability over a set of structurally homo-
geneous conformations. Using the clustering and the folding
criterion F introduced above, values ofPf

C for the 78 183
clusters can be computed by Eq.s3d, i.e., the number of
conformations of the cluster that fold within 5 ns divided by
the total number of conformations belonging to the cluster.

In this paper we provide evidence that the basic assump-
tion mentioned above, that is, similar conformations have
similar folding probabilities, holds in the case of beta3s, a
three-stranded antiparallelb-sheet peptide investigated by
MD.12 Moreover, we show that the computationally expen-
sive

FIG. 1. Probability distribution for the first passage timesfptd to the most
populated clustersfolded stated of the DRMS 1.2 Å clusterization.
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Pffag =
1

W
o
i=1

W

pfoldsid, i [ a, s4d

which is measured by starting several simulations from each
snapshoti in the clustera with W snapshots, is well approxi-
mated byPf

C whose evaluation is straightforward.
To test the assumption that similar structures have simi-

lar pfold and to compare the values ofPf
C with those obtained

from the standard approach,1 folding probabilitiesPf were
computed for the structures of 37 clusters by starting several
5 ns MD runs from each structure and counting those that
fold fEqs. s1d and s4dg. The 37 clusters chosen among the
78 183 include both high- and low-populated clusters with

Pf
C values evenly distributed in the range between 0 and 1

ssee Table Id. In the case of large clusters a subset of snap-
shots is considered for the computation ofPf. In those cases
W is replaced in Eq.s4d by Wsample,W that is the number of
snapshots involved in the calculation.

The standard deviation ofpfold in a cluster is computed
as

spfold
= Îk„pfoldsid − Pffag…2li[a. s5d

In the case of full kinetic inhomogeneity, i.e., random group-
ing of snapshots, thepfold value for all snapshots in a given
cluster will be equal to 0 or 1, indicating the coexistencesin
the same clusterd of structures that either exclusively fold or
unfold. In this casespfold

reflects the Bernoulli distribution.19

Figure 2sad shows that, even when onlynt=10 runs per snap-
shot are used to computepfold, spfold

values are not compat-
ible with those of a Bernoulli distribution. Moreover the val-
ues of the standard deviation decrease when the number of
trials nt increases, as reported in Fig. 2sbd for two sample
clusters. The asymptotic value ofspfold

snt→`d for these two
data sets is of 0.05 and 0.2. This value cannot reach zero
because snapshots in a cluster are similar but not identical.
These results suggest that snapshots inside the same cluster
are kinetically homogeneous and a statistical description of
pfold can be adopted, that is, folding probabilities are com-
puted as cluster averagessinstead of single snapshotsd by
means ofPf andPf

C.
We still have to verify thatPf

C indeed approximates the
computationally expensivePf. Namely, for the 37 clusters
mentioned above a correlation of 0.89 betweenPf

C andPf is
found with a slope of 0.86ssee Fig. 3sad and Table Id, indi-
cating that the procedure is able to estimate folding prob-
abilities for clusters on the folding-transition barriersPf

,0.5d as well as in the foldingsPf ,1.0d or unfolding sPf

,0.0d regions. The error bars forPf
C in Fig. 3sad are derived

from the definition of variance given in Eq.s3d. In the same
spirit of Eq. s3d the folding probabilityPf and its variance
are written as

Pf = kul =
1

N
o
i=1

N

ui ,

s6d

skul
2 =

1

N
Pfs1 − Pfd,

whereN=ont is the total number of runs andu is equal to 1
or 0, if the run folded or unfolded, respectively. Note that the
same number of runsnt has been used for every snapshot of
a cluster. The large vertical error bars in Fig. 3sad correspond
to clusters with less than ten snapshots. The largest devia-
tions betweenPf and Pf

C are around the 0.5 region. This is
due to the limited number of crossings of the folding barrier
observed in the MD simulationfFig. 3sbd, around 70 events
of folding12g. Improvements in the accuracy for the estima-
tion of Pf are achieved as the number of folding events, i.e.,
the simulation time, increasesfFigs. 3scd–3sedg.

The two main results of this study, i.e., the kinetic ho-
mogeneity of the clusters and the validity ofPf

C as an ap-

TABLE I. DRMS clusters used for the calculation ofPf.

Cluster Pf
C a Pf

b spfold

c Nd We Wsample
f

1 0.00 0.03 0.04 150 144 15
2 0.11 0.05 0.06 150 449 15
3 0.06 0.05 0.07 120 36 12
4 0.08 0.07 0.08 140 555 14
5 0.10 0.08 0.06 100 10 10
6 0.13 0.12 0.18 160 911 16
7 0.25 0.16 0.07 80 4 4
8 0.23 0.20 0.31 150 141 15
9 0.21 0.22 0.15 140 178 14
10 0.12 0.23 0.20 120 48 12
11 0.57 0.25 0.14 140 14 14
12 0.05 0.27 0.19 100 19 10
13 0.23 0.29 0.38 140 391 14
14 0.08 0.30 0.15 120 12 12
15 0.72 0.35 0.23 130 129 13
16 0.19 0.38 0.18 130 26 13
17 0.38 0.44 0.39 160 16 16
18 0.38 0.51 0.28 160 16 16
19 0.65 0.60 0.29 100 20 10
20 0.57 0.61 0.35 70 7 7
21 0.48 0.63 0.32 140 27 14
22 0.74 0.65 0.40 140 539 14
23 0.68 0.66 0.18 140 28 14
24 0.38 0.71 0.24 130 13 13
25 0.50 0.72 0.20 100 2 2
26 0.82 0.76 0.31 170 17 17
27 0.50 0.78 0.14 120 12 12
28 0.78 0.78 0.22 180 18 18
29 0.70 0.79 0.19 130 189 13
30 0.77 0.79 0.17 150 30 15
31 0.85 0.81 0.11 130 13 13
32 0.91 0.83 0.20 140 401 14
33 0.90 0.85 0.27 100 20 10
34 0.85 0.85 0.10 120 48 12
35 0.94 0.88 0.13 170 1990 17
36 0.71 0.94 0.07 70 7 7
37 0.95 0.95 0.06 150 855 15

aCluster −pfold fPf
C, Eq. s3dg.

bTraditional, i. e., computationally expensivePf value fEq. s4dg.
cStandard deviation ofpfold in a clusterfEq. s5dg.
dTotal number of trials used to evaluatePf. For every structurent=10 trials
were performedsN=nt Wsampled except for clusters 7 and 25 for which 20
and 50 trials were performed, respectively.
eNumber of snapshots in the cluster.
fNumber of snapshots used to evaluatePf. TheWsamplesubset was obtained
by selecting structures in a cluster everyuW/Wsampleu saved conformations.
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proximation ofPf, are robust with respect to the choice of
the clusterization. Similar results can be obtained also with
different flavors of conformation space partitioning, as long
as they group together structurally homogeneous conforma-
tions, e.g., clusterization based on root mean square devia-
tion of atomic coordinatessRMSDd or secondary structure
strings.19 The latter are appropriate for structured peptides
but not for proteins with irregular secondary structure be-
cause of string degeneracy. Note that partitions based on or-
der parametersslike native contactsd are usually unsatisfac-
tory and not robust. This is mainly due to the fact that
clusters defined in this way are characterized by large struc-
tural heterogeneities.7

IV. ANALYSIS OF TRANSITION STATE ENSEMBLE

The folding probability of structurei is estimated as
pfoldsid=Pf

Cfag for i [a. This approximation allows to plot

the pairwise RMSD distribution of beta3s structures with
pfold.0.51 snative stated, 0.49,pfold,0.51 stransition state
ensemble, TSEd, andpfold,0.49sdenatured stated fFig. 4sadg.
For the native state, the distribution is peaked around low
values of RMSDs,1.5 Åd indicating that structures with
pfold.0.51 are structurally similar and belong to a nonde-
generate state. The statistical weight of this group of struc-
tures is 49.4% and corresponds to the expected statistics for
the native state because the simulations are performed at the
melting temperature. In the case of TSE, the distribution is
broad because of the coexistence of heterogeneous struc-
tures. This scenario is compatible with the presence of mul-
tiple folding pathways. Beta3s folding was already shown to
involve two main average pathways depending on the se-
quence of formation of the two hairpins.7,11 Here, anaive
approach based on the number of native contacts11 is used to
structurally characterize the folding barrier. TSE structures

FIG. 2. Standard deviationspfold
=Îkspfoldsid−Pffagd2li[a of the pfold for the 37 DRMS clusters used in the study.sad spfold

as a function ofPf compared to
a Bernoulli distributionssolid lined. Ten trials were performed for each snapshot. The largest values for the standard deviation are located around the 0.5 region
and this is probably due to the Bernoulli processsu=0,1d used for the calculation ofpfold. sbd spfold

dependence on the number of trials used to evaluatepfold.
The dashed curves are fits with asa/Îxd+b function. The horizontal dashed lines are drawn to help identifying insad the two clusters used insbd. scd
Dependence ofPf on the number of trialsnt for the two clusters used insbd.

FIG. 3. Cluster folding probabilityPf
C. sad Scatter plot ofPf

C vs Pf. The DRMS 1.2 Å clusterization and the folding criterionF sreaching the most populated
cluster withintcommit=5 nsd were used.sbd Probability distribution of thepfold value for the 500 000 snapshots saved along the 10ms MD trajectory. The
folding probability for snapshoti is computed aspfoldsid=Pf

Cfag for i [a. sc–ed Scatter plot ofPf
C vs Pf for 1.0, 5.0, and 10ms of simulation time, respectively.
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with number of native contacts of the first hairpin greater
than the ones of the second hairpin are called type I confor-
mationsfFig. 4sbdg, otherwise they are called type IIfFig.
4scdg. In both cases the transition state is characterized by the
presence of one of the two native hairpins formed while the
rest of the peptide is mainly unstructured. These findings are
also in agreement with the complex network analysis of
beta3s reported in Ref. 7. Finally, the denatured state shows
a broad pairwise RMSD distribution around even larger val-
ues of RMSDs,5.5 Åd, indicating the presence of highly
heterogeneous conformations.

V. CONCLUSIONS

Two main results have emerged from the present study.
First, snapshots grouped in structurally homogeneous clus-
ters are characterized by similar values ofpfold. This result
justifies the use of a statistical approach for the study of the
kinetic properties of the structures sampled along a simula-
tion. Second, given a set of structurally homogeneous clus-
ters and a folding criterion, it is possible to obtain a first
approximation of the folding probability for every structure
sampled along an equilibrium folding-unfolding simulation.
Thus, the cluster −pfold is a quantitative measure of the ki-
netic distance from the native state and is computationally
very cheap.21 Furthermore, it can be used to detect multiple
folding pathways. The accuracy in the identification of the
transition state ensemble improves as the number of folding

events observed in the simulation increases. Recently the
clusterpfold approach has been used to identify the transition
state ensemble of a large set of beta3s mutantssfor a total of
0.65 ms of simulation time22d, which would have been im-
possible with traditional methods. As a further application,
the cluster −pfold procedure can be used to validate TSE con-
formations obtained by wide-spreadGō models.
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FIG. 4. Transition state ensemblesTSEd of beta3s.sad RMSD pairwise
distribution for structures withpfold.0.51 snative stated, 0.49,pfold,0.51
sTSEd, andpfold,0.49sdenatured stated. sbd Type I andscd type II transition
statessthin linesd. Structures are superimposed on residues 2–11 and 10–19
with an average pairwise RMSD of 0.81 and 0.82 Å for type I and type II,
respectively. For comparison, the native state is shown as a thick line with a
circle to label theN terminus.
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