Supporting Information

Binding motifs in the CBP bromodomain: an analysis of $\mathbf{2 0}$ crystal structures of complexes with small molecules

Jian Zhu, ${ }^{1}$ Jing Dong, ${ }^{1}$ Laurent Batiste, ${ }^{1}$ Andrea Unzue, ${ }^{2}$ Aymeric Dolbois, ${ }^{2}$ Vlad Pascanu, ${ }^{2}$ Paweł Śledź, ${ }^{1}$ Cristina Nevado,*2 and Amedeo Caflisch*1
${ }^{1}$ Department of Biochemistry, and ${ }^{2}$ Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland

Corresponding Authors: caflisch@bioc.uzh.ch (A.C.); cristina.nevado@chem.uzh.ch (C.N.)

Crystallization, data collection and refinement of the CBP/ligand complexes.

CBP bromodomain was purified as previously described ${ }^{1}$ and was crystallized with ligands by vapor diffusion in hanging drops at 277 K . Co-crystals of CBP bromodomain in complex with compound 1, 10, 15, 16 and 20 were grown under the condition of 0.15 M potassium thiocyanate, 20% PEG3350 and 10% ethylene glycol. CBP bromodomain was co-crystallized with compound $\mathbf{2}$ using reservoir buffer of $0.1 \mathrm{M} \mathrm{MES}, \mathrm{pH} 6.5,0.1 \mathrm{M} \mathrm{MgCl} 2$, 20% PEG6000 and 10% ethylene glycol. Co-crystals of CBP with compound $\mathbf{3}$ and $\mathbf{1 2}$ were grown from reservoir buffer of 0.1 M HEPES-Na, pH 7.5, 0.2 M potassium thiocyanate, 20% PEG3350 and 10% ethylene glycol. CBP bromodomain was co-crystallized with compound 9 under the condition of 0.1 M sodium cacodylate, $\mathrm{pH} 6.5,0.2$ M calcium acetate and 18% PEG8000. Co-crystal of CBP and compound $\mathbf{1 3}$ was grown under the condition of 0.1 M HEPES-Na, $\mathrm{pH} 7.5,0.2 \mathrm{M} \mathrm{MgCl}_{2}$ and 25% P3350. Co-crystal of CBP bromodomain with compound $\mathbf{1 7}$ was grown under the condition of 0.1 M HEPES-Na, $\mathrm{pH} 7.5,0.2 \mathrm{M} \mathrm{LiSO}_{4}$ and 25% PEG3350. CBP bromodomain with compound $\mathbf{1 8}$ was crystallized against the reservoir buffer of 0.1 M Bis-Tris, $\mathrm{pH} 6.5,0.2 \mathrm{M} \mathrm{MgCl}_{2}$, 5% ethylene glycol and 23% PEG3350. Co-crystal of CBP bromodomain with compound 19 was obtained using the reservoir buffer of 0.1 M sodium citrate, pH 5.6 and 1.3 M ammonium sulfate.

Diffraction datasets of co-crystals of CBP/ligand complex were collected at beamlines X06DA and X06SA, Swiss Light Source. Data reduction was performed with XDS ${ }^{2}$ and scaled with Aimless. ${ }^{3}$ Structures were solved by molecular replacement with Molrep ${ }^{4}$ or Phaser ${ }^{5}$ using the apo CBP structure 3DWY as a start model. Structures were refined with PHENIX ${ }^{6}$ and were manually modelled with COOT. ${ }^{7}$ Topology files for compounds were generated from the PRODRG server. ${ }^{8}$

BROMOscan assay

The binding constant (Kd) determinations by means of BROMOscan technology were carried out at DiscoverX. An E. coli strain derived from BL21 was used as the host to grow T7 phage strains displaying the bromodomains. E. coli, grown to log-phase, were infected with T 7 phage (from a frozen stock, being the multiplicity of infection 0.4) and incubated while shaking at $32{ }^{\circ} \mathrm{C}$ for $90-150$ minutes until lysis. In order to remove cell debris, lysates were centrifuged at $5,000 \mathrm{xg}$ and filtered $(0.2 \mu \mathrm{~m})$. Affinity resins were obtained by treating streptavidin-coated magnetic beads with biotinylated acetylated peptide ligands for 30 minutes at $25^{\circ} \mathrm{C}$. Those beads were then blocked with excess of biotin and washed with blocking buffer (SeaBlock (Pierce), 1% bovine serum albumin (BSA), 0.05% Tween 20, 1 mM dithiothreitol (DTT) to remove the unbound ligand and reduce non-specific phage binding. During the experiment, the bromodomain, ligand-bound affinity beads and test compounds were combined in a buffer composed of 17% SeaBlock, 33% phosphate-buffered solution (PBS), 0.04% Tween $20,0.02 \%$ BSA, 0.004% sodium azide and 7.4 mM DTT. Test compounds were prepared as 50 mM solutions in pure DMSO and diluted to 5 mM with monoethylene gycol, MEG ($100 \times$ concentrated in respect to the top screening concentration $50 \mu \mathrm{M}$). During the assay the DMSO and MEG final concentrations were 0.1% and 0.9%, respectively. The assays were carried out in polystyrene 96 -well plates in a final volume of 0.135 mL . The assay plates were incubated at $25^{\circ} \mathrm{C}$ with shaking for 1 hour and the affinity beads were washed with a buffer composed of 0.05% Tween 20 in PBS.

The beads were then re-suspended in the elution buffer (1 x PBS, 0.05% Tween $20,2 \mu \mathrm{M}$ non-biotinylated affinity ligand) and incubated at $25^{\circ} \mathrm{C}$ with shaking for 30 minutes. The bromodomain concentration in the elutes was measured by qPCR. K_{d} values were calculated with a standard dose-response curve using the Hill equation and curves were fitted using a non-linear least square fit with the Levenberg-Marquardt algorithm.

AlphaScreen assay

IC_{50} determinations by means of Amplified Luminescent Proximity Homogeneous Assay (Alpha) Screen technology were carried out at Reaction Biology. Compounds were tested in 10-dose IC ${ }_{50}$ mode with 2 or 3-fold serial dilution starting at varying concentrations. The competitive ligand was H4/4Ac: Histone H4 peptide (1-21) K5/8/12/16Ac-Biotin. Alpha signal (Ex/Em=680/520-620 nm) was detected with an EnSphire plate reader. Data include raw data (signal-background, background was measured without BRD but all other components.), \% binding (relative to DMSO controls), and curve fits. An IC_{50} value higher than the starting compound concentration was estimated based on the best curve fitting available. Dose-response curves were fit with GraphPad Prism 6 software.

Synthesized final products characterizations

NMR spectra were recorded on AV2 400 or AV2 500 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual 1 H and 13 C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), multiplet (m), and broad (br). Melting points were determined on a Mettler Toledo MP70 melting point instrument. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. High-resolution electrospray ionization mass spectrometry was performed on a Finnigan MAT 900 (Thermo Finnigan, San Jose, CA, USA) double-focusing magnetic sector mass spectrometer. Ten spectra were acquired. A mass accuracy $\leq 2 \mathrm{ppm}$ was obtained in the peak matching acquisition mode by using a solution containing $2 \mu \mathrm{~L}$ PEG200, $2 \mu \mathrm{~L}$ PPG450, and 1.5 mg NaOAc (all obtained from SigmaAldrich, Buchs, Switzerland) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau, E-Barcelona) as internal standard.

Methyl 5-((5-acetyl-2-ethoxyphenyl)carbamoyl)-2-(2-(piperazin-1-yl)ethoxy)benzoate (12)

Yellow solid; mp 122-127 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.14(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 6 \mathrm{H}), 2.61-2.60(\mathrm{~m}, 7 \mathrm{H}), 1.55$ (t, $J=7.0 \mathrm{H} \square 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.2,165.7,163.8,161.1,151.0,132.8,130.6,130.5,127.4$, $126.6,124.6,120.5,120.3,113.3,110.4,67.8,64.7,57.4,55.1,52.2,46.1,26.6,14.7$; IR (neat): $\tilde{v}=3438,2927$, $2828,1723,1677,1605,1592,1540,1504,1435,1258,1221,1150,1116,1079,1039,913,834,802,728,594$, $578,554 \mathrm{~cm}^{-1} ; \mathrm{HRM} \square$ (E■), m / \square calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}, 470.2286$; found, 470.2288 .

N -(5-acetyl-2-ethoxyphenyl)-3-(2H-tetrazol-5-yl)-5-(thiazol-4-yl)benzamide (13)

Brown solid; mp 234-235 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=9.97$ (s, 1 H), 9.32 ($\mathrm{s}, 1 \mathrm{H}$), $8.90(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (t, $J=7.0 \mathrm{H} \square 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=196.2,164.5,155.4,153.4$, 136.3, 135.4, 129.4, 129.2, 127.6, 127.3, 127.2, 127.0, 126.6, 125.7, 125.0, 116.5, 112.0, 64.4, 26.4, 14.4. One carbon is missing due to overlapping; IR (neat): $\tilde{v}=3434,1671$, $1652,1584,1538,1435,1337,1267,1030,889,835,816,736,597 \mathrm{~cm}^{-1} ; \mathrm{HRM} \square(\mathrm{E} \square), \mathrm{m} / \square$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}^{+}$: 435.1239 found: 435.1236.

1-(3'-(3,3-difluoropiperidin-1-yl)-6-ethoxy-[1,1'-biphenyl]-3-yl)ethan-1-one (15)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J$ $=7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2$ H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{H}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=196.8,159.8,150.2,138.6,131.4,130.7,130.2,129.6,128.8,121.8,118.4,120.1(\mathrm{t}$, $J=243.2 \mathrm{~Hz}), 116.0,111.5,64.2,55.6(\mathrm{t}, J=29.8 \mathrm{~Hz}), 49.2,32.3(\mathrm{t}, J=23.8 \mathrm{~Hz}), 26.4,22.2(\mathrm{t}, J=5.4 \mathrm{H}), 14.6$; IR (neat): $\tilde{v}=1673,1597,1445,1355,1264,1242,1212,1100,1039,916,751,699,587 \mathrm{~cm}^{-1} ; H R M \square(E \square), \mathrm{m} / \square$ calcd for C21H24F2NO2 ${ }^{+}$: 360.1775 found: 360.1767.

N-(5'-acetyl-5-(2,5-dimethyl-3-oxo-2,3-dihydroisoxazol-4-yl)-2'-ethoxy-[1,1'-biphenyl]-3-yl)furan-2-

 carboxamide (16)

Beige solid; mp 114-115 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.22$ (br s, 1 H), $8.01-$ $7.94(2 \mathrm{H}), 7.88(\mathrm{~d}, J=94 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 1 H), 6.58 (br s, 1 H), 4.17 (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.58 (br s, 3 H), 2.60 ($\mathrm{s}, 3 \mathrm{H}$), 2.49 ($\mathrm{s}, 3$ $\mathrm{H}), 1.43(\mathrm{t}, J=6.6 \mathrm{H} \square 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.8,166.6,164.7,159.8$, 156.1, 147.7, 144.3, 139.0, 137.4, 131.7, 130.1, 129.9, 129.5, 125.4, 120.3, 118.4, 115.3, $112.6,111.6,109.8,64.4,26.4,14.7,13.3$. Two carbons are missing due to overlapping; IR (neat): $\tilde{v}=1660,1593,1435,1256,1039,759,586 \mathrm{~cm}^{-1} ; \mathrm{HRM} \square(\mathrm{E} \square), \mathrm{m} / \square$ calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}: 461.1713$ found: 461.1711.
N-(5'-acetyl-2'-ethoxy-5-(2-ethyl-5-methyl-3-oxo-2,3-dihydroisoxazol-4-yl)-[1,1'-biphenyl]-3-yl)furan-2carboxamide (17)

White solid; mp 138-140 ${ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.26$ (br $\mathrm{s}, 1 \mathrm{H}), 7.96-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.55(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{H} \square 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=197.0,166.4,165.0,159.9,156.3,147.9,144.4,139.1$, $137.5,131.8,130.2,130.1,130.0,129.8,125.5,120.4,118.6,115.4,112.8,111.7,110.1$, $64.5,41.4,26.6,14.8,13.4,12.9$; IR (neat): $\tilde{v}=3271,2984,2358,2338,1672,1645,1637,1608,1593,1579,1551$, $1437,1410,1355,1291,1252,1226,1201,1152,1039,1009,973,916,877,805,756,723,699,618,611,594$, $582 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{~N}_{2}{ }^{+}$: 475.1864, found: 475.1866.

N-(5'-acetyl-5-(3,5-dimethylisoxazol-4-yl)-2'-ethoxy-[1,1'-biphenyl]-3-yl)furan-2-carboxamide (18)

White solid; mp 191-192 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19$ (br s, 1 H), 7.98 $7.96(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.27$ $-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{H} \square, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=196.8,165.7,159.9,158.9,156.3,147.8,144.5,139.3,137.9$, 131.6, 131.2, 130.4, 130.3, 129.8, 126.6, 120.1, 119.7, 116.5, 115.7, 112.9, 111.7, 64.6, $26.5,14.8,11.9,11.1$; IR (neat): $\tilde{v}=3266,1673,1644,1608,1593,1580,1564,1551,1438,1411,1355,1318$, 1290, 1252, 1226, 1201, 1152, 1039, 1009, 973, 916, 877, 805, 756, 727, 700, 618, 611, 595, $582 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\right]$: 445.1758 ; found: 445.1765 .

Methyl 3-((7H-purin-6-yl)carbamoyl)benzoate (20)

 $=172.0,166.5,165.7,165.6,162.2,151.1,146.3,144.4,133.8,133.5,133.1,133.0,130.0,129.9,129.8,129.5$, $129.4,129.2,114.6,52.5$; IR (neat): $\tilde{v}=3437,3362,2962,1728,1695,1624,1593,1531,1381,1301,1247,1095$, 1080, 888, 722, $699 \mathrm{~cm}^{-1} ; \operatorname{HRM} \square(\mathrm{E} \square): \mathrm{m} / \square$ calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{-}: 296.0789$, found: 296.0789.

NMR traces

-196.85

Table S1. X-ray data collection and refinement statistics for complex structures of the CBP bromodomain and compounds.

PDB ID	5EIC	50WK	5EP7	5MME
Compound	1	2	3	9
Data Collection				
Space group	H3	$\mathrm{P} 22_{1} 2_{1} 2_{1}$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
Cell dimensions a, b, c (A)	121.26, 121.26, 40.78	44.34, 45.07, 61.15	24.35, 24.35, 104.23	53.37, 54.26, 81.05
Cell dimensions $\alpha, \beta, \gamma\left({ }^{\circ}\right.$)	90.00, 90.00, 120.00	90.00, 90.00, 90.00	90.00, 90.00, 90.00	90.00, 90.00, 90.00
Resolution (A)	38.01-1.50	45.07-1.25	45.36-1.20	45.09-1.35
Unique observations*	35709 (5211)	33757 (1613)	37308 (5255)	51995 (7336)
Completeness*	99.8 (99.7)	97.9 (96.0)	99.7 (98.1)	99.2 (97.2)
Redundancy*	5.1 (5.0)	6.0 (5.8)	11.6 (10.6)	6.4 (5.6)
Rmerge*	0.055 (0.310)	0.041 (0.089)	0.036 (0.154)	0.048 (0.609)
CC (1/2)	0.998 (0.937)	0.997 (0.951)	1.000 (0.991)	0.999 (0.786)
I/ $/ \mathrm{I}^{*}$	15.6 (5.5)	28.8 (14.2)	37.4 (13.3)	17.2 (2.8)
Refinement				
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ *	0.173/0.209 (0.201/0.244)	0.162/0.176 (0.162/0.179)	0.166/0.176 (0.170/0.185)	0.164/0.176 (0.246/0.266)
R.m.s deviations bond (\AA)	0.006	0.005	0.011	0.005
R.m.s deviations angles (${ }^{\circ}$)	0.892	0.955	1.158	0.884
$\text { B-factors }(\mathrm{P} / \mathrm{L} / \mathrm{O})\left(\AA^{2}\right) * *$	12.0/32.0/24.4	11.4/15.7/26.4	12.0/12.2/24.4	18.3/15.5/30.8
Ramanchandran Favored	100	100	100	99.11
Ramanchandran Allowed	0	0	0	0.89
Ramanchandran Disallowed	0	0	0	0

PDB ID	5MMG	5ENG	5MPK	6FQU
Compound	10	12	13	15
Data Collection				
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$			
Cell dimensions a, b, c (A)	34.18, 49.30, 80.50	34.24, 49.71, 80.35	45.08, 60.20, 87.64	35.26, 49.76, 80.58
Cell dimensions $\alpha, \beta, \gamma\left({ }^{\circ}\right.$)	90.00, 90.00, 90.00	90.00, 90.00, 90.00	90.00, 90.00, 90.00	90.00, 90.00, 90.00
Resolution (Å)	42.04-1.23	42.27-1.30	45.08-1.90	42.34-1.43
Unique observations*	39623 (5607)	34079 (4672)	19464 (2783)	26946 (1291)
Completeness*	98.4 (97.0)	98.7 (94.4)	99.9 (99.9)	99.9 (99.4)
Redundancy*	6.2 (5.6)	6.8 (5.5)	8.8 (9.1)	12.5 (8.0)
Rmerge*	0.032 (0.163)	0.031 (0.162)	0.091 (0.967)	0.060 (0.469)
CC (1/2)	0.999 (0.980)	1.000 (0.983)	0.999 (0.811)	0.999 (0.864)
$\mathrm{I} / \sigma \mathrm{I}^{*}$	28.2 (9.9)	33.2 (9.5)	12.0 (2.4)	24.3 (4.2)
Refinement				
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ *	0.157/0.163 (0.170/0.167)	0.165/0.173 (0.167/0.176)	0.183/0.239 (0.312/0.343)	0.170/0.194 (0.313/0.346)
R.m.s deviations bond (A)	0.005	0.008	0.011	0.007
R.m.s deviations angles (${ }^{\circ}$)	0.872	1.113	0.955	1.126
B-factors(P/L/O) (\AA^{2}) ${ }^{* *}$	13.4/13.6/29.9	12.1/27.4/25.1	41.7/44.3/41.3	14.6/19.0/30.3
Ramanchandran Favored	98.9	99.00	99.09	99.02
Ramanchandran Allowed	1.10	1.00	0.91	0.98
Ramanchandran Disallowed	0	0	0	0

PDB ID	6FQO	6FR0	6FRF	5MPN
Ligand	16	17	18	19
Data Collection				
Space group	P21	P21	P21	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
Cell dimensions a, b, c (A)	50.74, 43.66, 51.30	51.31, 43.88, 51.42	54.64, 93.88, 62.53	44.58, 44.72, 60.76
Cell dimensions $\alpha, \beta, \gamma\left({ }^{\circ}\right.$)	90.00, 99.42, 90.00	90.00, 99.21, 90.00	90.00, 94.22, 90.00	90.00, 90.00, 90.00
Resolution (A)	43.66-1.35	43.88-1.50	47.13-2.10	44.72-1.23
Unique observations*	48359 (2388)	35942 (1776)	36396 (2948)	34316 (4552)
Completeness*	99.0 (96.1)	98.8 (98.9)	99.1 (98.6)	95.6 (88.4)
Redundancy*	6.6 (5.8)	6.6 (6.6)	4.7 (4.2)	6.9 (6.8)
Rmerge*	0.033 (0.452)	0.062 (0.417)	0.058 (0.602)	0.058 (0.364)
CC (1/2)	1.000 (0.898)	0.998 (0.920)	0.999 (0.769)	0.999 (0.924)
I/бI*	26.5 (3.4)	14.5 (3.9)	15.1 (2.2)	16.5 (5.1)
Refinement				
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ *	0.161/0.199 (0.171/0.219)	0.178/0.202 (0.202/0.223)	0.175/0.228 (0.241/0.302)	0.158/0.167 (0.192/0.219)
R.m.s deviations bond (\AA)	0.006	0.007	0.008	0.014
R.m.s deviations angles (${ }^{\circ}$)	0.832	1.062	1.051	1.000
B-factors(P/L/O) (\AA^{2}) ${ }^{* *}$	18.5/12.2/29.0	26.6/21.7/33.8	39.9/33.0/40.9	15.1/14.3/28.2
Ramanchandran Favored	100	100	99.78	100
Ramanchandran Allowed	0	0	0.22	0
Ramanchandran Disallowed	0	0	0	0
* Statistics for the highest resolution shell is shown in parentheses. ** P/L/O indicate protein, ligand in the active site and solvent molecules, respectively.				

Figure S1. 2Fo-Fc electron density maps of compounds 1, 2, 3, 9, 10, 12, 13, 15, 16, 17, 18, 19 and 20 bound to CBP bromodomain at a contour level of 1.0 sigma.

Figure S2. Alignment of complex structure of CBP/1 with apo CBP bromodomain structure 3DWY. Compound $\mathbf{1}$ is shown in cyan stick. Hydrogen bond interaction between Asp1124 and Tyr1167 in the apo crystal structure are shown in green dash.

Figure S3. (A) Alignment of complex structures of CBP bromodomain with compounds 11 (yelloworange), $\mathbf{1 2}$ (vilotpurple), 13 (grey) and 14 (marine). (B) Structural comparison of the binding mode of compounds 9 (deepteal) and 12 (vilotpurple).

Figure S4. Binding mode comparison of purine-containing compounds of (A) 20 in CBP, (B) '7d' in BRD9 ${ }^{9}$ and (C) ' 4 ' in BRPF1 ${ }^{10}$ bromodomains. (D) Alignment of three complex structures. Ligands are shown in stick and CBP, BRD9 and BRPF1 bromodomain are shown in deepsalmon, cyan and pink, respectively.

Figure S5. Dose-response curves in duplicates for compounds 3 (UN32), 4 (DC06), 5 (DC07), 7 (DIS-0515-1), 9 (US46C-p), 10 (UT07C), 11 (XF19), 12 (UP39), $\mathbf{1 3}$ (DK19), $\mathbf{1 4}$ (US13A), 19 (FA26) and 20 (DIS-0215-C52) in BROMOscan assays.

Figure S6. Dose-response curves of compounds 10, 13, 15, 16, 17, 18 and 19 in AlphaScreen binding assays.

References:

1. Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S., Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149 (1), 214-31.
2. Kabsch, W., Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 2), 133-44.
3. Evans, P. R.; Murshudov, G. N., How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 2013, 69 (Pt 7), 1204-14.
4. Vagin, A.; Teplyakov, A., Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 1), 22-5.
5. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. J Appl Crystallogr 2007, 40 (Pt 4), 658-74.
6. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; GrosseKunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 2), 213-21.
7. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 4), 486-501.
8. Schuttelkopf, A. W.; van Aalten, D. M., PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004, 60 (Pt 8), 1355-63.
9. Picaud, S.; Strocchia, M.; Terracciano, S.; Lauro, G.; Mendez, J.; Daniels, D. L.; Riccio, R.; Bifulco, G.; Bruno, I.; Filippakopoulos, P., 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J Med Chem 2015, 58 (6), 2718-36.
10. Zhu, J.; Caflisch, A., Twenty Crystal Structures of Bromodomain and PHD Finger Containing Protein 1 (BRPF1)/Ligand Complexes Reveal Conserved Binding Motifs and Rare Interactions. J Med Chem 2016, 59 (11), 5555-61.
