Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model

Supporting Information

Peter Kolb[†], Danzhi Huang[†], Fabian Dey[†] and Amedeo Caflisch^{*}

Department of Biochemistry University of Zürich Winterthurerstrasse 190 CH-8057 Zürich, Switzerland Phone: (+41 44) 635 55 21 FAX: (+41 44) 635 68 62 email: caflisch@bioc.uzh.ch

 † these authors contributed equally to this work

* Corresponding author

September 5, 2007

Contents

Supplementary Figure S1	S3
Supplementary Figure S2	$\mathbf{S4}$
Supplementary Figure S3	$\mathbf{S5}$
Supplementary Table S1	$\mathbf{S6}$
CDK2 inhibitors, Gibson et al.	S7
CDK2 inhibitors, Bramson et al.	S12
Lck inhibitors, part 1	S14
Lck inhibitors, part 2	S17
p38 inhibitors	S20
EGFR inhibitors, Aparna et al.	S23
EphB4 inhibitors, Berset et al.	S28

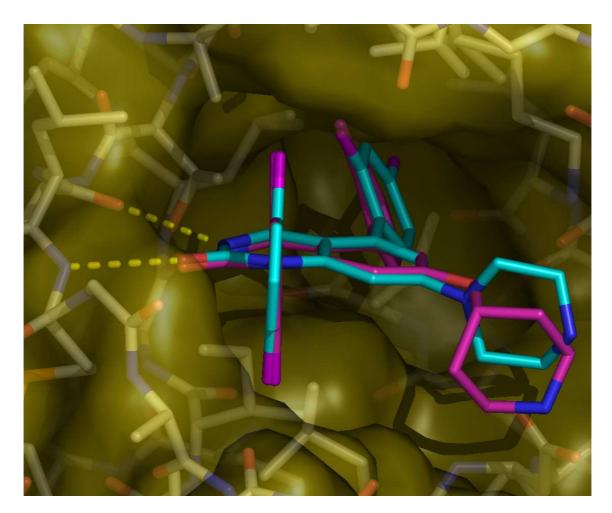


Figure S1: Comparison of the pose of the manually placed compound 14f (magenta) with the X-ray structure of compound 14e (cyan) in p38 (PDB code 1M7Q, compound names according to Stelmach et al., Bioorg. Med. Chem. Lett. 13, 277, 2003; see Figures S25 and S26). Figure prepared with PyMOL (DeLano Scientific, San Carlos, CA, USA).

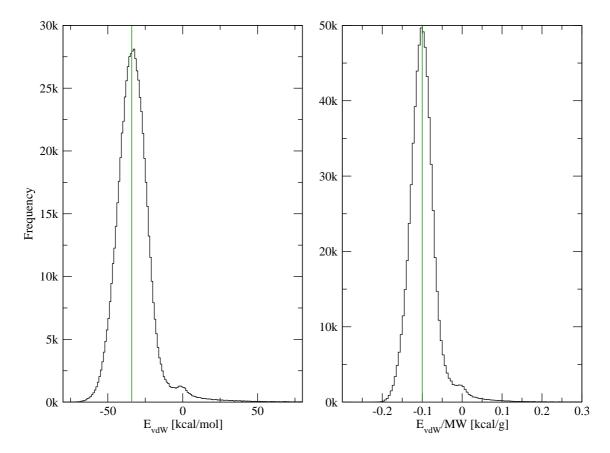


Figure S2: Histograms of the van der Waals interaction energy (left) and the van der Waals efficiency (right) of the 690530 poses of the 40735 diverse compounds from the ZINC library. The green lines are at the values which were used for the first filter (-35 kcal/mol for van der Waals energy and -0.1 kcal/g for van der Waals efficiency).

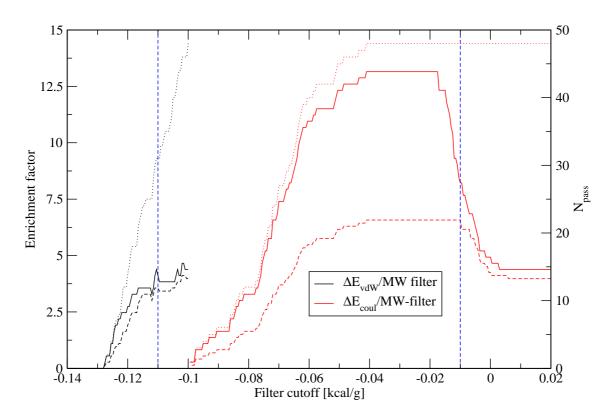
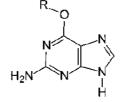


Figure S3: Dependency of the enrichment factors (EFs) on the values of the filter cutoffs and the window sizes chosen. The black curves were obtained by applying the $\Delta E_{vdW}/MW$ -filter and the red curves by applying the $\Delta E_{coul}/MW$ filter, respectively. The blue dashed lines correspond to the cutoffs used in the manuscript. Enrichment factors were calculated in 0.0005 kcal/g steps, using the formula $\left(\frac{N_{inh,s\%}}{N_{cpds,s\%}}\right) \left(\frac{73}{40448}\right)^{-1}$. Two window sizes *s* were used to calculate the enrichment factors at each cutoff value: s = 5% (solid lines) and s = 10% (dashed lines). The amount of molecules in each window were always computed from the entire set of 40448 molecules, i.e., there are 2022 and 4044 molecules in the 5% and 10% windows, respectively. The dotted lines are the numbers of known inhibitors that pass the filters, Npass, which is shwon by the y-axis on the right of the plot.

	Enrichment factors ^{a}				
Filter	one-param.	two-param.	three-param.		
$E_{coul}/MW \le -0.01 \mathrm{kcal/g}$	4.7	7.1	8.2		
H-bond to hinge region	5.5	11.2	12.3		
$E_{vdw}/MW \le -0.11 \mathrm{kcal/g}$	2.2	4.4	5.2		
all filters	8.8^{b}	8.8^{b}	8.8^{b}		


Table S1: Enrichment factors of CDK2 inhibitors calculated as $\left(\frac{N_{inh,5\%}}{N_{cpds,5\%}}\right) \left(\frac{73}{40448}\right)^{-1}$, where $N_{cpds,5\%} = 2022$ (5% of 40448). ^aRankings were obtained using the CDK2 LIECE model with the number of parameters specified. ^bNote that using "all filters", all of the remaining 32 known inhibitors are ranked in the first 5% by all of the three LIECE models.

CDK2 inhibitors, Gibson et al.

Gibson, A. E.; Arris, C. E.; Bentley, J.; Boyle, F. T.; Curtin, N. J.;

Probing the ATP ribose-binding domain of cyclin-dependent kinases 1 and 2 with O6-substituted guanine derivatives.

J. Med. Chem. 2002. 45, 3381–3393.

		• 1				
		CDK inhibition (IC ₅₀ (µM) or % inhibition at the concentration indicated)				
compd	R	CDK1/cyclin B CDK2/cyclin				
1	Me	$36\pm1\%$	$35\pm1\%$			
		$(100 \ \mu M)$	$(100 \ \mu M)$			
2	Et	$48 \pm 1\%$	$51\pm5\%$			
		$(100 \ \mu M)$	$(100 \ \mu M)$			
3	<i>n</i> -Pr	75 ± 7	67 ± 5			
4	<i>n</i> -Bu	32 ± 3	48 ± 7			
5	$Me(CH_2)_3CH_2$	37 ± 6	49 ± 7			
6	$Me(CH_2)_5CH_2$	62 ± 6	$> 100 \ \mu M$			
7	<i>i</i> -Pr	75 ± 14	75 ± 10			
8	EtCH(Me)	27 ± 3	25 ± 1			
9	(Me) ₂ CHCH ₂	45 ± 8	42 ± 5			
10	EtCH(Me)CH ₂	17 ± 1	15 ± 2			
11	$(Me)_2CHCH_2CH_2$	21 ± 4	26 ± 9			

Figure S4: Gibson et al., table 1

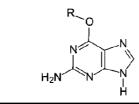

Compd.	R		CDK inhibition (IC ₅₀ (µM) or % inhibition at the concentration indicated)				
		CDK1/Cyclin B	CDK2/Cyclin A				
12	CH≡CCH ₂	91 ± 6	90 ± 7				
13	CH2=CH(CH2)3CH2	41 ± 4	47 ± 4				
14	E-EtCH=CHCH ₂ CH ₂	76 ± 6	69 ± 8				
15	CH2=CHCH2	68 ± 10	78 ± 13				
16	CH2=C(Me)CH2	32 ± 9	35 ± 6				
17	CH2=C(Et)CH2	19 ± 2	21 ± 2				
18	CH2=C(i-Pr)CH2	11 ± 1	16 ± 1				
19	CH2	25 ± 1	34 ± 3				
20		21 ± 4% (10 μM)	12 ± 4% (10 μM)				
21	MeC(O)CH ₂	$15 \pm 3\%$	$16 \pm 3\%$				
22	i-PrC(O)CH ₂	$(100 \ \mu M)$ $41 \pm 8\%$ $(100 \ \mu M)$	(100 μM) 31 ± 3% (100 μM)				

Figure S5: Gibson et al., table 2

Compd.	R		M) or % inhibition at the on indicated)
	-	CDK1/Cyclin B	CDK2/Cyclin A
23	\bigcirc	15 ± 1	21 ± 4
24	\bigcirc	19 ± 8	31 ± 7
25	$\bigcirc \frown$	7 ± 1	17 ± 2
26	$\tilde{\bigcirc}$	11 ± 3	22 ± 4
27	\bigcirc	6 ± 1	13, 19
28	\sim	$17 \pm 7\%$	$18 \pm 15\%$
	CH3 CH2	(10 µM)	(10 µM)
29	L L	55 ± 1%	$29 \pm 10\%$
	P	(10 µM)	(10 µM)
30	~ ~ /	37 ± 6	44 ± 3
	\bigcirc \checkmark		
31	\sim	24 ± 3	35 ± 6
32	H.C.	$70 \pm 1\%$	52 ± 7%
	H ₃ C	(100 µM)	(100 µM)
33	H ₂ N	$65 \pm 1\%$	$52 \pm 3\%$
		(100 µM)	(100 µM)
34		$28 \pm 4\%$	$19 \pm 1\%$
		(10 µM)	(10 µM)
35	CH30	$65 \pm 1\%$	$49 \pm 14\%$
	U ((100 µM)	(10 µM)
36	\sim	59 ± 7	65 ± 6
	\square		
37	~~^	$12 \pm 4\%$	$9\pm8\%$
	(1)	(10 µM)	(10 µM)
38	\langle	$10 \pm 4\%$	$3 \pm 4\%$
	$\langle \rangle$	(10 µM)	(10 µM)

		CDK inhibition (IC ₅₀ (µM) or % inhibition at the concentration indicated)		
compd	R	CDK1/cyclin B	CDK2/cyclin A	
39	HOCH ₂ CH(OH)CH ₂	$35\pm8\%$	$33\pm12\%$	
40	MeOCH ₂ -CH(OMe)CH ₂	$(100 \ \mu M) \\ 49 \pm 9\% \\ (100 \ \mu M)$	$(100 \ \mu M)$ $41 \pm 5\%$ $(100 \ \mu M)$	
41 42	MeC(OEt) ₂ CH ₂ EtC(OMe) ₂ CH ₂	36 ± 8 19 ± 2	33 ± 6 20 ± 5	

Figure S7: Gibson et al., table 4

Compd.	R		M) or % inhibition at the on indicated)
		CDK1/Cyclin B	CDK2/Cyclin A3
43	\bigcirc	49 ± 7% (100 μM)	40 ± 3% (100 μM)
44	Me Me CH ₃ O	10 ± 3% (100 μM)	16 ± 5% (100 μM)
45		$43 \pm 8\%$ (100 µM)	$\begin{array}{c} 36\pm5\%\\ (100\ \mu\text{M}) \end{array}$
46	Me 0	46 ± 4% (100 μM)	39 ± 2% (100 μM)
47	Me O	$31 \pm 3\%$ (100 µM)	27 ± 3% (100 μM)
48	Me Me	39 ± 12	65 ± 2
49		26 ± 7% (100 μM)	29 ± 3% (100 μM)
50	\bigcirc	$50 \pm 4\%$ (100 µM)	43 ± 2% (100 μM)
51		10 ± 6% (100 μM)	4 ± 5% (100 μM)
52		52 ± 2% (100 μM)	52 ± 2% (100 μM)
53	HN	70 ± 1% (100 μM)	64 ± 6% (100 μM)
54	HN	52 ± 2% (100 μM)	$\begin{array}{c} 43 \pm 7\% \\ (100 \ \mu M) \end{array}$
55	× NH	22 ± 6% (100 μM)	15 ± 5% (100 μM)
56	S-NH	50 ± 5% (100 μM)	35 ± 4% (100 μM)
57		$58 \pm 8\%$ (100 µM)	$43 \pm 5\%$ (100 µM)
58	Ň	55 ± 3% (100 μM)	43 ± 3% (100 μM)

Figure S8: Gibson et al., table 5

CDK2 inhibitors, Bramson et al.

Bramson, H. N.; Corona, J.; Davis, S. T.; Dickerson, S. H.; Edelstein, M.;

Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): Design, synthesis, enzymatic activities, and X-ray crystallographic analysis.

J. Med. Chem. 2001. 44, 4339–4358.

		R6 N R7					
						kinase I	C ₅₀ (nM)
cmpd no.	R4	R5	R6	R7	х	CDK1	CDK2
		Lead					
16	Н	Br	н	Н	N	780	60
		Linker					
17 18	H H	H H	H H	н н	N CH	1300 3000	120 690
19	н	н	н	н	CCH ₃	2300	360
20	Н	CI	н	Н	N	300	43
21	Н	CI	н	н	CCH ₃	220	22
22 23	H H	5-oxazolyl 5-oxazolyl	H H	H H	N CH	10 17.	2.3 2.5
23	Н	5-oxazolyl	н	Н	CCH ₃	7.1	2.0
		4-Substituents			0.0113		-10
25	Ι	H	н	н	N	110	4.6
26	-CH ₂ CH ₃	н	н	Н	N	46	7.9
27	-CH(CH ₃) ₂	Н	н	н	N	37	2.5
28 29	-CH ₂ CH(CH ₃) ₂	H H	H H	H H	N N	19 15	1.2 1.5
30	-CH=C(CH ₃) ₂ -OCH ₂ CH ₃	Н	н	н	N	550	93
31	-OCH(CH ₃) ₂	Н	н	н	N	41	3.4
32	-OPh	Н	н	н	N	290	13
33	-(CH ₂) ₂ -(4-pyridyl)	Н	Н	н	N	290	21
34 35	-CH=CH-(4-phenol) -(CH ₂) ₂ -(4-phenol)	H H	H H	H H	N N	170 150	9.3 12
36	3-pyrazolyl	н	н	н	N	250	19
37	-CO ₂ CH ₂ CH ₃	Н	н	н	CH	130	8.9
38	-CH ₂ OH	Н	н	н	CH	1700	54
39	-NO ₂	Н	н	Н	N	> 1000	2400
40	-CONH ₂	Н	Н	н	N	> 1000	>1000
41	н	5-Substituents F	н	н	N	290	34
42	Н	F I	н	н	N	290	11
43	н	-CH ₃	н	н	N	330	46
44	Н	-OH	Н	н	N	77	10
45	H	-OCH ₃	Н	н	N	210	12
46 47	H H	-NO2 -NH2	H H	H H	N N	710 1400	15 74
48	Н	-N(CH ₃) ₂	н	н	сн	2800	310
49	н	-SO ₂ CH ₃	н	н	N	350	16
50	Н	-SO ₂ NH ₂	Н	Н	N	170	43
51 52	H H	-SO ₃ H	H H	Н	N	130	15
52 53	Н	-CO ₂ H -CO ₂ CH ₃	H	H H	CH CH	150 12	28 2.1
54	н	-CO ₂ CH ₂ CH(CH ₃) ₂	н	н	CH	19	3.0
55	Н	-COCH ₂ CH(CH ₃) ₂	н	н	CH	16	1.9
56	н	-CONH ₂	н	н	N	2.8	4.5
57 58	H H	-CON(CH ₃) ₂ -CONH(CH ₂) ₂ -(1 <i>H</i> -imidazol-4-yl)	H H	H H	N N	130 69	17
59	H	-CONH(CH ₂) ₂ -(1H-imidazol-1-yl)	н	н	N	230	25
60	Н	-CONHCH2-(4-pyridyl)	н	Н	N	74	8.9
61	Н	-CONHCH ₂ -(3-pyridyl)	Н	Н	N	51	2.1
62 63	H H	-CONHCH ₂ C(CH ₃) ₂ CH ₂ OH -CONHCH ₂ -(2,6-dimethoxyphenyl)	H H	H H	N N	60 9.3	6.8 1.7
03				п	14	3.3	1.7
64	н	6-Substituents H	Br	н	N	520	43
65	Н	н	-CH ₂ CH ₃	н	N	660	43
66	Н	Н	-CH(CH ₃) ₂	н	N	790	75
67	Н	Н	-C(CH ₃) ₃	Н	N	>10 000	>10 000
68 69	H H	H H	-CH ₂ OH	H H	CH N	740 >10 000	61
09	п	п	-OPh	п	14	~10000	>10 000

Figure S9: Bramson et al., table 1

						kinase	IC50 (nM)
mpd no.	R4	R5	R6	R7	х	CDK1	CDK2
			7-Substi	tuents			
70	Н	Н	H	-CH ₃	CH	>10 000	>10 000
71	Н	-CH ₃	н	-CH ₃	CH	$>10\ 000$	$>10\ 000$
72	Н	CI -	Н	-CH ₃	CH	>10 000	>10 000
			4,5-Subst	tituents			
73	Cl	-CH ₃	н	н	N	250	13
74	Cl	-OCH ₃	Н	н	N	1700	54
75	-CH ₃	-NO ₂	Н	Н	N	87	4.6
76	-CH=	N-NH-	Н	Н	N	120	13
77	-C(CI)	-NH-	н	н	N	83	2.2
78	-N=	N-NH-	н	н	N	150	9.5
79	-S-	CH=N-	н	н	N	43	7.1
80	-S-	CH=N-	н	Н	CH	29	2.8
81	-CH=C	H-CH=N-	Н	Н	N	12	1.6
82	-CH=C	H-CH=N-	Н	н	CH	15	1.5

Figure S10: Bramson et al., table 1 continued

Lck inhibitors, part 1

Chen, P.; Norris, D.; Iwanowicz, E. J.; Spergel, S. H.; Lin, J.;

Discovery and initial SAR of imidazoquinoxalines as inhibitors of the src-family kinase p56(Lck).

Bioorg. Med. Chem. Lett. 2002. 12, 1361–1364.

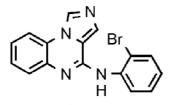


Figure S11: Chen et al., 2002a, scaffold 1

Figure S12: Chen et al., 2002a, scaffold 6

Figure S13: Chen et al., 2002a, scaffold 7

Compd	R ¹ or R ²	X	Lck IC ₅₀ (nM) ^{13a}
1	2-Br	NH	170
6a	Cyclohexyl	na ^a	3170
6b	Cyclopropyl	na	3170
6c	n-Propyl	na	2680
6d	n-Hexyl	na	> 12,500
6e	Benzyl	na	> 12,500
6f	3-Cl-phenethyl	na	4390
6g	3-Pyridyl	na	820
6h	4-Pyridyl	na	> 12,500
7a	2-Br	0	3700
7b	2-Br	S	> 12,500
7c	2,6-di-Me		> 12,500
7d	2-Cl	N-Me	> 12,500
7e	2-Br	-NHCO	60
7f	2-Me	NHCO	> 12,500
7g	2,6-di-Cl	NHCO	810

Figure S14: Chen et al., 2002a, table 1

Compd	\mathbb{R}^2	X	Lck IC ₅₀ (nM) ^{13a}
1	2-Br	NH	170
7h	\mathbf{H}	\mathbf{NH}	890
7i	2-F	\mathbf{NH}	390
7j	3-F	NH	1330
7k	2-Cl	\mathbf{NH}	60
71	2-OMe	\mathbf{NH}	5520
7m	$2-NO_2$	\mathbf{NH}	> 12,500
7n	4-Br	\mathbf{NH}	> 12, 500
7o	2-Cl, 4-Me	\mathbf{NH}	240
7p	2-Cl, 4,6-di-Me	\mathbf{NH}	30
7q	2,4,6-tri-Me	\mathbf{NH}	40
7 r	2,6-di-Me	\mathbf{NH}	16
7s	2,6-di-Br	\mathbf{NH}	50
7t	2,6-di-Cl	\mathbf{NH}	9
7u	2,6-di-F	\mathbf{NH}	360
7v	2-Cl, 6-Me	\mathbf{NH}	9
7w	2,6-di-Et	\mathbf{NH}	1690

Figure S15: Chen et al., 2002a, table 2

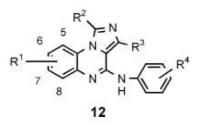


Figure S16: Chen et al., 2002a, scaffold 12

NL	D 1	Da	- D2	D 4	10 436 31
No.	R1	R2	R3	R4	IC ₅₀ (nM) ^{13a}
1	H	H	\mathbf{H}	2-Br	170
7k	H	н	\mathbf{H}	2-Cl	60
7r	н	н	\mathbf{H}	2,6-di-Me	16
7s	H	H	\mathbf{H}	2-Cl, 6-Me	9
12a	H	H	\mathbf{Ph}	2-Br	> 12,500
12b	н	H	Me	2-C1	30
12c	H	Me	\mathbf{H}	2-Br	180
12d	7,8-di-MeO	Me	\mathbf{H}	2-Cl, 6-Me	7.4
12e	7,8-di-MeO	CH_2OH	\mathbf{H}	2-Cl, 6-Me	6.2
12f	7,8-di-MeO	CHO	н	2-Cl, 6-Me	10
12g	7,8-di-MeO	CHN=OH	\mathbf{H}	2-Cl, 6-Me	4.3
12h	7,8-di-MeO	CHOHMe	\mathbf{H}	2-Cl, 6-Me	53
12i	7,8-di-MeO	CHOHi-Pr	н	2-Cl, 6-Me	238
12j	7,8-di-MeO	$(CH_2)_3OH$	\mathbf{H}	2-Cl, 6-Me	69
12k	7,8-di-MeO	C(=O)NHEt	\mathbf{H}	2-Cl, 6-Me	665
121	7,8-di-MeO	Н	Η	2, 6-di-Me	2.4
12m	7,8-di-MeO	H	\mathbf{H}	2-Cl, 6-Me	2

Figure S17: Chen et al., 2002a, table 3 $\,$

Lck inhibitors, part 2

Chen, P.; Iwanowicz, E. J.; Norris, D.; Gu, H. H.; Lin, J.;

Synthesis and SAR of novel imidazoquinoxaline-based Lck inhibitors: Improvement of cell potency.

Bioorg. Med. Chem. Lett. 2002. 12, 3153-3156.

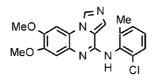


Figure S18: Chen et al., 2002b, scaffold 2

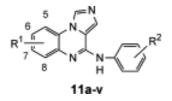


Figure S19: Chen et al., 2002b, scaffold 11

No.	Syn. route	R1	R ²	Lck IC ₅₀ (nM) ³	T-cell prolif. IC50 (nM)3
2	A	6,7-di-OMe	2-Cl, 6-Me	2	670
2a	Α	6,7-di-OMe	2,6-di-Me	2,4	1100
11a	Α	6,7-di-OH	2-Cl, 6-Me	4	>9000
11b	Α	6,7-OCH ₂ O	2-Cl, 6-Me	4	2000
11c	Α	6,7-O(CH ₂) ₂ O	2-Cl, 6-Me	10	2200
11d	Α	6-OMe	2-Cl, 6-Me	3	1400
11f	Α	7-OMe	2-Cl, 6-Me	8.7	2600
11g	Α	8-OMe	2-Cl, 6-Me	280	
11h	Α	5-OMe	2-Cl, 6-Me	9.4	2300
11i	Α	5-BnO	2-Cl, 6-Me	240	
11j	Α	5-NO ₂	2,6-di-Me	100	
11k	Α	$5-NH_2$	2,6-di-Me	70	
111	в	6-F	2-Cl, 6-Me	26	
11m	в	6-Br	2-Cl, 6-Me	15	
11n	Α	6-CO ₂ Me	2-Cl, 6-Me	26	
110	Α	6-NO ₂	2, 6-di-Cl	24	1000000
11p	Α	6-CN	2-Cl, 6-Me	100	
11q	Α	$6-NH_2$	2-Cl, 6-Me	7	1600
11r	Α	6-NHAc	2-Cl, 6-Me	3	1400
11s	В	7-Br	2-Cl, 6-Me	14	
11t	Α	$7-NH_2$	2-Cl, 6-Me	21	
11u	Α	7-NHAc	2-Cl, 6-Me	11	
11v	Α	7-CONH ₂	2-Cl, 6-Me	30	sussesses.

Figure S20: Chen et al., 2002b, table 1

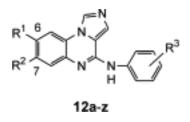


Figure S21: Chen et al., 2002b, scaffold 12

12z	12y	12x	12w	12v	12u	12t	12s	12r	12q	12p	120	12n	12m	121	12k	<u>1</u>	12i	12h	12g	12f	12e	12d	12c	12b	12a	No.
Ba	\mathbf{B}^{a}	B	Ba	\mathbf{B}_{2}	B	Ba	\mathbf{B}^{a}	Ba	B	Ba	Ba	B	Ba	Ba	\mathbf{B}_{2}	Ba	Ba	B	B	Ba	Ba	B	Ba	Ba	Ba	Syn. Route
OMe	OMe	OMe	OMe	3,5-di-Me-piperazine	OCH ₂ CH ₂ -morpholine	Η	Н	H	H	H	Н	H	N-Me-homopiperazine	3,5-di-Me-piperazine	N-Formyl piperazine	N-Et piperazine	N-Me-piperazine	Piperazine	Morpholine	NHCH ₂ CH ₂ CH ₂ -morpholine	NHCH ₂ CH ₂ -morpholine	NHCH ₂ CH ₂ NMe ₂	NHEt	NEt ₂	NMe ₂	R^1
NHCH ₂ CH ₂ NMe ₂	NHCH ₂ CH ₂ NMe ₂	NHCH ₂ CH ₂ -morpholine	OCH ₂ CH ₂ -morpholine	OMe	OMe	3,5-di-Me-piperazine	N-Me-piperazine	Piperazine	Morpholine	NHCH ₂ CH ₂ CH ₂ NMe ₂	NHCH ₂ CH ₂ NMe ₂	NEt ₂	Н	Н	Н	H	Н	Н	Н	e H	Н	Н	Н	Η	H	R^2
2-Cl, 6-F	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	Ŷ	2-Cl, 6-Me	Ŷ	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-Cl, 6-Me	2-CI, 6-Me	R ³
5	1,7	5.4	2.4	18	36	13	8	11	6	6	10	6	6	3	6	ເວ	1	در	4	ŝ	7	6	10	(J	5	Lck enzyme ^b IC ₅₀ (nM) ³
240	190	280	470	760		570	720	1000	1000	480	520	1700	540	340	530	270	240	380	780	760	1300	088	2200	2600	2000	Lck enzyme ^b IC ₅₀ (nM) ³ T-cell prolif. ^c IC ₅₀ (nM) ³

Figure S22: Chen et al., 2002b, table 2

p38 inhibitors

Stelmach, J. E.; Liu, L. P.; Patela, S. B.; Pivnichny, J. V.; Scapin, G.;

Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase.

Bioorg. Med. Chem. Lett. 2003. 13, 277–280.

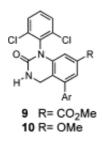


Figure S23: Stelmach et al., scaffold 9 and 10

Compd	Ar	p380
1		IC50 (nM)
9a	Br	0% @ 1000 nM
9b	H	0% @ 1000 nM
9c	Phenyl	30
9d	2-Fl-Phenyl	7
9e	3-Fl-Phenyl	79
9f	4-Fl-Phenyl	22
9g	2-Cl-Phenyl	1
9h	3-Cl-Phenyl	67
9i	4-Cl-Phenyl	47
9j	2-CF ₃ -Phenyl	50% @ 890 nM
9k	3-CF ₃ -Phenyl	170
91	4-CF ₃ -Phenyl	130
9m	2-CH ₃ -Phenyl	11
9n	3-CH ₃ -Phenyl	320
90	4-CH ₃ -Phenyl	44
9p	2,4-di Fl-Phenyl	7
9q	2,6-di Fl-Phenyl	44
9r	2-CH ₃ -4-Fl-Phenyl	11
9s	-S-2,4-di Fl-Phenyl	48% @ 1000
10a	2-Cl-4-Fl-Phenyl	3
10b	2,4-di Fl-Phenyl	11
10c	2-Cl-Phenyl	6

Figure S24: Stelmach et al., table 1

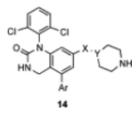


Figure S25: Stelmach et al., scaffold 14

Compd	Ar	X	Y	p38α	TNF- α Cell
				IC50 (nM)	IC ₅₀ (nM)
14a	2-Cl-Phenyl		CH	0.9	2.0 ^a
14b	2,4-di Fl-Phenyl		CH	0.2	1.3^{a}
14c	2-Cl-4-Fl-Phenyl		CH	0.1	1.0^{a}
14d	2-Cl-Phenyl		N	1.4	2.9^{a}
14e	2,4-di Fl-Phenyl		N	2.6	7.8^{a}
14f	2-Cl-Phenyl	0	CH	0.2	1.6^{a}
14g	2-Cl-4-Fl-Phenyl	0	CH	0.1	0.7 ^b
14h	2-Cl-Phenyl	NH	CH	0.5	4.4^{b}
14i	2,4-di Fl-Phenyl	NH	CH	0.6	4.5 ^a
14j	2-Cl-Phenyl	CH_2	Ν	0.1	1.4^{a}
14k	2-Cl-4-Fl-Phenyl	CH_2	N	0.13	0.7^{a}
141	2-Cl-Phenyl	CO	N	1.5	11.4^{a}
14m	2,4-di Fl-Phenyl	CO	Ν	2.4	26.8ª
14n	2-Cl-4-Fl-Phenyl	CO	N	1.1	3.8^{a}

Figure S26: Stelmach et al., table 2

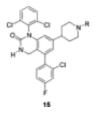


Figure S27: Stelmach et al., scaffold 15

Compd	R	p380 IC ₅₀ (nM)	TNF-ox cellIC ₅₀ (nM)	TNF-& WBIC ₅₀ (nM)	IV $t_{1/2}$ (h)	Vd (L/kg)	Clp (mL/min/kg)	AUCn PO (µM h)
15a	Methyl	0.5	1.3^{a}		1.5	5.3	49.8	0.06
15b	Ethyl	1.2	0.7^{b}	4.0	1212	7.5	56.3	0.11
15c	<i>i</i> -Propyl	0.6	0.2^{b}	5.6	1.9	12.2	84.8	0.06
15d	Cyclopropyl	1.1	16.6^{a}		2.5	8.1	51.7	0.39
15e	Methyl Cyclopropyl	0.5	0.3^{b}	7.6	1.9	6.3	50.9	0.15
15f	Ethyl 1-Cyclopropyl	0.3		7.0	2.0	4.7	31.1	0.36
15g	Cyclobutyl	0.4	0.5^{b}	12.2	1.7	6.6	53.7	0.14
15h	Methyl Cyclobutyl	0.6		27.1	1.6	2.5	24.2	0.14
15	r-buty1	0.2	0.6^{b}	10.1	2.2	6.0	35.2	0.58

Figure S28: Stelmach et al., table 4

EGFR inhibitors, Aparna et al.

Aparna, V.; Rambabu, G.; Panigrahi, S. K.; Sarma, J. A. R. P.; Desiraju, G. R.
Virtual screening of 4-anilinoquinazoline analogues as EGFR kinase inhibitors: Importance of hydrogen bonds in the evaluation of poses and scoring functions.
J. Chem. Inf. Model. 2005. 45, 725–738.

HN	R,	ну		HN	R, HN	R,	HN	AL RI	HN R.
	R ₂	\heartsuit	R ₀		Ro W	R, N	¢	RIVA	¢,
А	Molecule	В		С	D Substitution		E	Activity	F
	No.	Class	R ₁	R ₂	R ₃	R4	R ₅	pIC ₅₀	
	1	A	-			-		6.46	
							-		
	2	A	Me	-		-	-	6.04	
	3	A	CI	-	-	-	-	7.63	
	4	A	Br		-	-	•	7.56	
	5	A	1	-			-	7.09	
	6	A	CF3			•	•	6.23	
	7	A	Br	NO ₂		•	•	6.04	
	8	A	Br	OMe		-	-	6.45	
	9	A	Br	-	NO ₂	•		6.0	
	10	Α	Br	-	OMe	•	-	8.0	
	11	A	Br	OH	OH	•	-	9.76	
	12	A	Br	NH ₂	NH2	•	-	9.92	
	13	A	F	-	-	-	-	7.25	
	14	A		OMe	-	•	-	7.25	
	15	A		NH ₂		-	-	6.11	
	16	A	CF3	NH ₂		•		6.24	
	17	A		OMe	-			6.92	
	18	A			NH2		-	7.0	
	19	A	CF3	-	NH ₂	•	-	8.48	
	20	A	F	-	NO ₂	•	-	5.21	
	21	A	Cl	-	NO ₂	-	-	6.09	
	22	Α	1	-	NO ₂	-	-	6.26	
	23	A	•	OMe	OMe		•	7.53	
	24	A	F	OMe	OMe	-	•	8.42	
	25	A	Cl	OMe	OMe	-	•	9.5	
	26	A	I	OMe	OMe	-	-	9.05	
	27	A	CF3	OMe	OMe	-	-	9.61	
	28	A	Br	NHMe	-	-	-	8.39	
	29	A	Br	NMe ₂	-	•	-	7.07	

Figure S29: Aparna et al., table 1

Molecule	Class			Substitution			Activity
No.	Class	R ₁	R ₂	R ₃	R ₄	R5	pIC ₅₀
30	A	Br	NHCOOMe	-	-	-	7.92
31	A	Br	-	OH	-	-	8.32
32	A	Br	-	NHAc	-	-	7.39
33	A	Br	-	NHMe	-	-	8.15
34	Α	Br	-	NHEt	-	-	7.92
35	A	Br	-	NMe ₂	-	-	7.95
36	A	Br	NH ₂	NHMe	-	-	9.16
37	A	Br	NH ₂	NMe ₂	-	-	6.79
38	A	Br	NH ₂	OMe	-	-	8.42
39	A	Br	NH ₂	Cl	-	-	8.18
40	A	Br	NO ₂	NHMe	-	-	7.16
41	A	Br	NO ₂	OMe	-	-	7.82
42	A	Br	NO ₂	Cl	-	-	7.6
43	A	Br	OEt	OEt	-	-	11.22
44	A	Br	O-n-Pr	O-n-Pr	-	-	9.76
45	A	Н	OMe	OMe	Br	-	10.14
46	В	Br	-	-	-	-	7.46
47	В	Br	NH ₂	-	-	-	8.11
48	В	Br	Cl	-	-	-	7.74
49	В	Br	F	-	-	-	7.35
50	в	Br	NHMe	-	-	-	8.5
51	В	Br	NMe ₂	-	-		8.01
52	В	Br	OMe	-	-	-	8.36
53	С	Br	-	-	-	-	7.45
54	с	Br	=	NHAc	-	-	7.53
55	С	Br	-	F	-	-	7.88
56	с	Br	-	OMe	-	-	7.40
57	с	-	-	NH ₂	-	-	6.60
58	с	NO ₂	-	NH ₂	-	-	7.39
59	с	-	-	NH ₂	-	Br	6.61
60	С	Br	-	NH ₂	-	-	8.00
61	С	-	-	NH ₂	Br	-	7.59
62	с	-	-	NH ₂	CF ₃	-	5.32

Figure S30: Aparna et al., table 1, continued

Molecule	Class			Substitution			Activity
No.	Class	R ₁	R ₂	R ₃	R ₄	R ₅	pIC ₅₀
63	с	-	-	NH2	-	OMe	5.43
64	С	OMe	-	NH ₂	-	-	6.88
65	С	-	-	NH ₂	OMe	-	6.17
66	с	-	-	NH ₂		NH ₂	5.27
67	С	NMe ₂	-	NH ₂	-	-	5.74
68	С	-	-	NH ₂	NMe ₂	-	5.31
69	С	F	-	NH ₂	· ·	-	6.07
70	С	Cl	-	NH ₂	-	-	6.92
71	С	OH	-	NH ₂	-	-	7.15
72	С	Me	-	NH ₂	-	-	7.39
73	D	Br	-	-	-	-	7.29
74	D	Br	Cl	-	-	-	7.39
75	D	Br	F	-	-	-	6.9
76	D	Br	OMe	-	-	-	8.58
77	D	Br	NH - ONe	-	-	-	8.63
78	E	Br	-	-	-	-	6.16
79	Е	Br	-	NH2	-	-	6.02
80	Е	Br	-	F	-	-	6.16
81	Е	Br	-	NHMe	-	-	7.28
82	Е	Br	-	NMe ₂	-	-	6.48
83	Е	Br	-	OMe	-	-	6.58
84	F	Н	NHMe	-	-	÷	7.88
85	F	Br	Cl	-	-	-	7.08
86	F	Br	NH ₂	-	-	-	8.82
87	F	Br	NHMe	-	· ·	-	9.11
88	F	Br	NMe ₂	-	•	-	9.02
89	F	Br	OMe	-	-	-	8.42
90	F	Br	NH~NO°	-	-	-	9.09
91	F	Br		-	-	-	8.53
92	F	Br	NH NH	-	-	-	9.6
93	F	Br		-	-	-	8.63

Figure S31: Aparna et al., table 1, continued

Molecule	Class			Substitution			Activity
No.	Class	R1	R ₂	R ₃	R4	R ₅	pIC ₅₀
94	F	Me	Cl	-	-	-	6.42
95	F	Me	NH ₂	-	-	-	7.76
96	F	Me	NHMe	=	-	-	8.36
97	F	Me	NMe ₂	-	-	-	8.39
98	F	Me	NH~^^C°	-	-	•	8.63
99	F	Me	NH NH	-	-	-	8.52
100	С	Br	-	ин ОН	-	-	9.61
101	с	Br	-	NMe	-	-	8.58
102	с	Br	-	NH ОН ОН	-	-	9.03
103	с	Br	-	NMe ОН ОН	-	-	8.49
104	с	Br	-	N OH OH	-	-	7.85
105	с	Br	-	и ОН	-	-	7.92
106	с	Br	-	NH NH Me	-	-	7.34
107	с	Br	-	NHN_Me	-	-	8.05
108	с	Br	-	NHN Me (CH ₂)4Me	•	-	8.13
109	с	Br	-	NH (CH ₂) ₅ N Me	-	-	8.07
110	с	Br	-	NMe (CH ₂) ₂ NMe	-	-	7.39
111	С	Br	-	NH~NO	-	-	8.49
112	с	Br	-	NH~~~N_0	-	-	8.72
113	С	Br	-	*~~~Q	-	-	8.26
114	с	Br	-	NHNOM	-	-	8.30
115	С	Br	-	NH NH OH	-	-	8.03
116	С	Br	-	NH NH OH	-	-	8.92

Figure S32: Aparna et al., table 1, continued

Molecule	Class			Substitution			Activity
No.	Class	R ₁	R ₂	R3	R ₄	R ₅	pIC ₅₀
117	С	Br	-	NHNH ₂	-	-	8.14
118	с	Br	-	NH	-	-	9.29
119	С	Br	-	NH- NJ	-	-	9.04
120	с	Br	-	NH	-	-	8.82
121	с	Br	-	NH	-	-	9.21
122	с	Br	-	NH OH	-	-	9.55
123	С	Br	-	NMe OH	-	-	7.79
124	с	Br	-	NH SOH	-	-	8.85
125	С	Me	-	NHN_Me	-	-	8.26
126	с	Me	-	NH ~~~ NO°	-	-	8.03
127	с	Me	-	NHNNSMe	-	-	8.25
128	с	Me	-		-	-	8.45

Figure S33: Aparna et al., table 1, continued

EphB4 inhibitors, Berset et al.

Berset, C.; Audetat, S.; Tietz, J.; Gunde, T.; Barberis, A.; Schumacher, A.; Traxler, P.

Protein Kinase Inhibitors.

International Patent Application 2005. Publication Number: WO/2005/120513