Structure-based tailoring of compound libraries for high-throughput screening: Discovery of novel EphB4 kinase inhibitors

Supplementary Material

Peter Kolb^{1,†}, Catherine Berset Kipouros², Danzhi Huang¹, Amedeo Caflisch^{1,*}

¹Department of Biochemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich, Switzerland

²Oncalis AG
Biotech Center Zurich
Wagistrasse 21
CH-8952 Schlieren, Switzerland

*Corresponding author Phone: (41 44) 635 55 21 FAX: (41 44) 635 68 62 email: caffisch@bioc.uzh.ch

Keywords: EphB4, tyrosine kinases, angiogenesis, cancer, docking, high-throughput screening

 $^\dagger Present$ address: Department of Pharmaceutical Chemistry University of California, San Francisco $1700~4^{th}~Street$ San Francisco, CA 94158, USA

October 25, 2007

Kolb et al.	Supplementary	Material
-------------	---------------	----------

2

Contents

Compound ranking	3
Enzymatic assays	4
References	5

Compound ranking. It is necessary to discard poses with unlikely binding modes through the application of filters before calculating the binding energies with LIECE.¹ The quotient of the van der Waals energy and the molecular weight (the "van der Waals efficiency") is a very useful filter. Compounds 1-3 were identified in rankings using it as a filter. The three applied filter/ranking combinations were: (i) ranking according to the vdW-efficiency; (ii) vdW-efficiency $\leq -0.116 \,\mathrm{kcal \cdot g^{-1}}$, then ranking according to ΔG^L (free energy of binding predicted by the LIECE model); (iii) vdW-efficiency $\leq -0.1 \,\mathrm{kcal \cdot g^{-1}}$, number of rotatable bonds ≤ 5 , and van der Waals interaction energy $\leq -35 \,\mathrm{kcal \cdot mol^{-1}}$, then ranking according to ΔG^L . The cutoffs were obtained from the distributions of the respective values. Compounds 1-3 and the five weak EphB4 inhibitors with different anchors were among the best 300 poses in at least one of these rankings. Compounds 4-8 were not present in the original library of 728202 molecules.

FRET-based enzymatic assay. The EphB4 FRET enzymatic assay (Z'Lyte Tyr kinase assay, Invitrogen, USA) was performed according to the manufacturer's protocol. Briefly, EphB4 kinase, at a concentration of 3.5 ng per reaction well, was incubated for one hour with FRET-peptide substrate in the presence of ATP at a concentration of $30 \,\mu\text{M}$, which is near its K_m . Reactions were developed and stopped and fluorescence was measured at 440 nm and 520 nm emission with excitation at 400 nm. IC₅₀ values were calculated with GraphPad Prism 5.0 (GraphPad Software).

FRET-based enzymatic assay at Cerep. The compounds showing the strongest inhibition effects were verified in the FRET-based assay² offered by Cerep (France). Briefly, compounds were measured in duplicates at eight different concentrations ranging from 10 nM to $20 \mu\text{M}$. The concentrations of EphB4 and ATP in the assay were $0.2 \mu\text{g/ml}$ and $0.75 \mu\text{M}$ (which corresponds to its K_m), respectively.

References

- [1] Huang D, Caflisch A. Efficient evaluation of binding free energy. J Med Chem 2004; 47:5791–5797.
- [2] Mathis G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 2003; 41:1391–1397.