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ABSTRACT: Tumor necrosis factor α (TNF-α) is a central driver
of inflammation in autoimmune conditions such as Crohn’s disease
and rheumatoid arthritis (RA). Targeting epigenetic regulators
involved in cytokine expression holds therapeutic promise, yet the
precise role of the CBP/EP300 bromodomains (BRDs) in
modulating immune responses remains poorly understood. Here,
we introduce a distinct class of selective CBP/EP300-BRD
inhibitors based on a unique 3-methylcinnoline acetyl-lysine
mimic, identified through high-throughput fragment docking.
These inhibitors significantly reduce TNF-α-driven cytokine
expression in vitro by blocking NFκB signaling in immune cells.
In vivo, BRD inhibition led to a robust anti-inflammatory effect,
decreasing cytokine secretion (including IL-1β, MCP-1, IL-1α, and
IL-6) and preventing immune cell migration to inflamed lymph nodes in a TNF-α-stimulated murine model. Our findings highlight
CBP/EP300-BRDs as promising targets for autoimmune therapy, with these non-cytotoxic inhibitors offering a potential
complementary approach for RA and other TNF-α-mediated inflammatory conditions.
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■ INTRODUCTION
Inflammation is an evolutionary conserved mechanism of the
immune system which, among other functions, initiates the host
response to pathogens and tissue repair.1 Tumor necrosis factor
α (TNF-α) is one of the best-characterized mediators of the
inflammatory response, playing a key role in autoimmune
diseases such as rheumatoid arthritis (RA), psoriasis and
Crohn’s disease.2,3 Two transmembrane receptors TNFR1
(CD120a) and TNFR2 (CD120b) mediate the mechanism of
action of TNF-α by activation of the transcription factor nuclear
factor κB (NFκB).2,4−8 Recombinant proteins that inhibit TNF-
α activity have proved to be effective in treating inflammatory
autoimmune diseases, but immunogenicity and supply chain
complexity have hampered their broad application.3,9 Interest-
ingly, several approaches are now being investigated to block
TNF-α using small molecules, none of which have reached the
clinic to date.10,11 However, epigenetics�known to regulate the
signaling pathways downstream of TNF-α12�offers an
alternative approach to inhibiting TNF-α beyond directly
blocking the interaction between TNF-α and TNFR1/2.
The homologous proteins CREB-binding protein (CBP) and

E1A-associated protein (EP300) are key epigenetic regulators,
able to both “read” and “write” protein lysine acetylation marks
through their bromo-(BRD) and histone acetyltransferase
(HAT) domains, respectively.13−17 One mechanism through

which acetylation regulates inflammation is by modulating the
transcriptional capacity, DNA-binding ability, and duration of
activation of NFκB.18−20 In fact, CBP/EP300 are known to
acetylate the p65 subunit of NFκB at K310, which is required for
NFκB’s full transcriptional activity.21,22 Additionally, CBP acts
as a co-activator and is essential for NFκB-mediated tran-
scription independently of its HAT activity.23

Several inhibitors that target theHAT, BRD and KIX domains
of CBP/EP300 have been reported24−32 (chemical structures
and binding affinities of selected landmark BRD inhibitors in
Table S1). Recently, a potent CBP/EP300-HAT inhibitor,
C646,33 was shown to reduce pro-inflammatory gene expression
in LPS-stimulated macrophages.34,35 In contrast, the contribu-
tion of the CBP/EP300-BRD to inflammation is much less
clear�upon treatment with different small molecule BRD
inhibitors, both anti- and pro-inflammatory effects have been
reported, highlighting the need to characterize better the
connection between these two proteins, particularly their BRD,
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and the inflammatory response.36−44 Here, we present the
protein structure-based development of a novel, structurally
distinct class of CBP/EP300-BRD ligands based on an
unprecedented acetyl-lysine mimic�3-methylcinnoline. Our
findings reveal a critical role of CBP/EP300-BRD in the TNF-α-
induced inflammatory cascade, demonstrating that selective
inhibition of this BRD reduces NFκB transcriptional activity,
leading to significant downregulation of cytokine gene
expression in vitro. These effects extend to in vivo models,
where CBP/EP300-BRD inhibition lowers cytokine secretion
levels, and immune cell recruitment within lymphatic tissues in
an TNF-α-driven acute inflammation model in mice. This study
not only clarifies the role of the CBP/EP300-BRD in
inflammation but also highlights its potential as a therapeutic
target in treating RA and other TNF-α-mediated inflammatory
diseases.

■ RESULTS

Development of CBP/EP300 Inhibitors Bearing a Novel
3-Methylcinnoline Moiety

Our previously reported docking campaign of 419 fragments
identified a unique acetylated lysine mimicking scaffold, 3-
methylcinnoline, which exhibited the most favorable binding
energy when targeting CBP/EP300-BRD.45 To validate this
fragment, we chimerized a 3-methylcinnoline containing an
amino group in 5-position with a 3-acetamido-5-(furancarbox-
amido) benzoic acid, present in the most potent derivatives of
previously in-house developed acetophenone-based CBP
inhibitors (Table S1, 16 in Batiste et al.).32 This campaign
produced our first hit, compound 1 (Figure 1a, for detailed
synthetic schemes see Supporting Information). It is important
to note that the pose predicted by SEED-docking46 was indeed
confirmed by the crystal structure of the CBP-BRD in complex
with the cinnoline derivative 1 (Figure 1b; PDB code 6SQM).45

The conserved polar interactions of acetylated lysines with the
side chains of Asn1168 (direct hydrogen bond) and Tyr1125
(water-bridged) were preserved by the two adjacent nitrogens of
the cinnoline core. Furthermore, the electrostatic interactions
between the furane oxygen and adjacent carbonyl oxygen of
ligand 1 and the guanidinium of Arg1173 impart selectivity
against the BRD4(1) bromodomain, which has an Asp in the
corresponding position in the BC-loop.32 Further contribution
to the selectivity is due to the difference in a three-residue

segment of the ZA-loop (the so-called shelf), namely the triad
Leu-Pro-Phe (LPF-shelf, Figure 1b) in CBP/EP300 which is
Trp-Pro-Phe in BRD4(1) and the majority of the 61 human
bromodomains.47

Although 1 displayed remarkable potency towards CBP and
excellent selectivity over BRD4(1), while exhibiting acceptable
kinetic solubility (Figure 2a), no ligand engagement in cellulo
(via InCELL Pulse) could be confirmed (Figure 2b). Similarly,
upon treatment of myeloma LP1 cells with 1, the expected
decrease in transcription factor myc expression�an established
downstream effect of an efficient CBP/EP300-BRD inhib-
ition48�was not observed (Figure 2c). This lack of cellular
activity is in stark contrast to that of GNE-27225 (Figure 2b,c), a
well-characterized and structurally unrelated CBP/EP300-BRD
inhibitor with similar affinity (IC50 = 12 nM in-house TR-FRET;
Kin. Sol = 75.1 ± 1.0 μM). In fact, the poor cellular activity of 1
could be explained by a bidirectional Caco-2 assay (Table S2),
which confirmed a very low membrane permeability for this
compound.
Hit to Lead Optimization for In Vitro and In Vivo Studies
Several modifications were designed to improve both the cell
permeability and solubility of compound 1. First, different
bioisosters were introduced to replace the acetamide moiety
while retaining the stacking interaction with the Gln1113 side
chain (Figure 1b). Derivatives bearing 1-methyl- (2), 1-methyl-
4-chloro- (3) and 3,5-dimethyl- (4) pyrazole units were
synthesized and displayed comparable binding affinities in
vitro (Figure 2a). Compound 2 showed a significant improve-
ment in terms of cellular target engagement (Figure 2d) and was
able to significantly decrease myc expression levels (Figure 2e).
However, the low kinetic solubility of all three derivatives
(Figure 2a) encouraged further modifications targeting
saturation at the carboxamide unit.
To address this, (R)- and (S)-tetrahydrofuran- (5 and 6) as

well as oxetane-containing (7) derivatives were prepared.
Further, an N-methyl piperazine was added as an ionizable
solubilizing group in C5 position of the furane (8). As a result,
the solubility of these compounds increased drastically by up to
27-fold (Figure 2a). Interestingly, 5 and 6 were able to engage
the target very similarly in the InCELL Pulse assay and both
significantly decreased the expression level of myc (Figure 2f,g).
In addition to their excellent binding affinities, 2 and 5 were
highly selective over BRD4(1) (Figure 2a), and a broader panel
of various BRD-containing proteins (Figure S1), while also

Figure 1.Novel acetyl-lysine mimic 3-methylcinnoline, its derived hit compound 1, and their binding modes to the CBP-BRD. (a) Chemical structure
of 1�a chimera of 3-methylcinnoline and a tail group of the most potent in house developed acetophenone-based inhibitors.32 (b) Overlay of the co-
crystal structure of ligand 1 (olive) in the CBP-BRD binding pocket (PDB code: 6SQM)45 and the docked 3-methylcinnoline (orange). The key
binding interactions are highlighted: direct H-bond interactions with Asn1168 and Arg1173, water mediated interaction with Tyr1125 and stacking
interaction with Gln1113. Arg1173 and the Leu-Pro-Phe shelf in CBP/EP300 contribute to the selectivity against BRD4(1).
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exhibiting improved cellular permeability in a Caco-2 assay
(Table S2) in comparison to the parent compound 1. Thus, 2
and 5 were selected for the subsequent biological evaluation of
the CBP/EP300-BRD inhibitors in inflammation.
CBP/EP300-BRD Inhibition Reduces TNF-α-Induced
Cytokine Expression by Inhibiting NFκB Signaling

To characterize the anti-inflammatory effect of the CBP/EP300-
BRD inhibitors 2 and 5, we explored their effect on the TNF-α

response in THP-1, a human acute monocytic leukemia cell line
commonly used to study monocyte and macrophage func-
tions.49 Firstly, we validated that stimulation of these cells with
10 ng/mL TNF-α (dose response in Figure S2) increased the
expression of several pro-inflammatory cytokines (Figures 3a
and S3). Specifically, il1β, il8 and tnf-α all peaked 1 h after TNF-
α treatment before reducing again to a level which was elevated
in comparison to pre-stimulation. In contrast, mcp-1 expression

Figure 2.Optimization of cinnoline based CBP/EP300-BRD inhibitors. (a) Structural optimization and biochemical data of the inhibitor series; IC50
(CBP) obtained by in-house TR-FRET assay; KD (BRD4(1)) and KD (CBP) by commercial Bromoscan assay; ± st. dev. between technical replicates,
an=4, all other kinetic solubility measurements n=2; bfold-selectivity calculated based on KD (CBP) = 0.009 μM. (b,d,f) Cellular binding of developed
inhibitors and GNE-27225 to CBP-BRD as determined by the InCELL Pulse assay following 1 h compound treatment of HEK293T cells transiently
transfected with ePL-CBP-BRD; RLU�relative light unit. (c,e,g) mycmRNA expression following 4 h treatment of LP1 cells with 1 μM compound;
GNE = GNE-272. mRNA expression was quantified by RT-qPCR, and gene expression was normalized to cells treated with DMSO in the same
experimental run.
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displayed different kinetics, continuing to increase for at least
8 h. il23a was not strongly induced by TNF-α under these
conditions.
To determine if the CBP/EP300-BRD contributes to this

TNF-α-induced cytokine expression, THP-1 cells were co-
treated for 1 h with 10 ng/mL TNF-α and 1 μM of 2 or 5. The
commercial CBP/EP300-BRD inhibitor GNE-27225 as well as
the CBP/EP300-HAT inhibitor A48528 were included for
comparison. Promisingly, CBP/EP300-BRD inhibition led to a
strong and highly significant reduction in the TNF-α-induced
expression of il1β, il8, mcp-1 and tnf-α (Figures 3b and S4). In
this single-dose set-up, GNE-272 and compound 2 inhibited
expression to a greater extent than the less potent but more
soluble inhibitor 5. Likewise, the HAT inhibitor A485
significantly reduced the TNF-α-induced expression of all four
tested genes. Among these cytokines, only the protein levels of
IL-8 could be quantified, with 2, GNE-272 and A485
significantly reducing its TNF-α-induced secretion (Figure

S5). Additionally, both CBP/EP300-BRD and HAT inhibition
significantly reduced the expression of these cytokines in the
absence of TNF-α (Figures 3b and S4).
It is well established that TNF-α strongly induces NFκB-

regulated gene expression, as shown here using an NFκB-
response element (RE) luciferase reporter assay (Figure 3c). We
hypothesized that CBP/EP300-BRD inhibition may have its
effect on cytokine gene expression by affecting NFκB signaling
and indeed all three BRD inhibitors were able to partially block
TNF-α-stimulated NFκB-mediated gene expression with their
relative activities in line with their BRD binding affinities (Figure
3c). It is thus clear that the CBP/EP300-BRD plays an
important role in reaching the maximal TNF-α-induced NFκB
activity, but is not essential for this pathway as its inhibition did
not entirely reduce the activity to the level of unstimulated cells
even at saturating inhibitor concentrations.
In a clinical setting, treatment occurs following the onset of

inflammation so we also determined if CBP/EP300-BRD

Figure 3. CBP/EP300-BRD inhibitors target TNF-α-induced inflammation in vitro with reduced toxicity. (a) Cytokine mRNA expression in THP-1
cells following treatment with 10 ng/mLTNF-α. Gene expression was determined by RT-qPCR and normalized to hprt and then to unstimulated cells
in the same experimental run. Raw Cp values shown in Figure S3. (b) Cytokine mRNA expression following 1 h co-treatment of THP-1 cells with
10 ng/mL TNF-α and 1 μM GNE-272 (abbr. GNE), 2, 5 or A485. mRNA expression quantified by RT-qPCR, normalized to hprt and then to the
average of ctrl + DMSO treated cells from all experimental runs. Raw CP values shown in Figure S4. (c) NFκB-RE luciferase reporter assay. HEK293T
cells transfected with an NFκB-RE luciferase reporter plasmid were treated for 2 h with BRD inhibitors then stimulated with 10 ng/mL TNF-α for 4 h
before luciferase activity was determined. Signal was normalized to cells treated with DMSO and TNF-α on the same plate. (d) Cytokine mRNA
expression in THP-1 cells following a therapeutic treatment protocol with BRD inhibitors: 5 h 10 ng/mL TNF-α with 1 μM compounds added 1.5 h
after TNF-α stimulation. mRNA expression quantified by RT-qPCR, normalized to hprt and then to cells treated with TNF-α and DMSO in the same
experimental run. Raw Cp values shown in Figure S6. Cellular viability of (e) THP-1 and (f) MRC5 cells following three-day treatment with
compounds. Viability determined using resazurin and normalized to DMSO treated cells on the same plate.
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inhibition can reduce pro-inflammatory cytokine expression
following a therapeutic paradigm. Similarly to co-administration,
treatment with CBP/EP300-BRD inhibitors 1.5 h after TNF-α
stimulation significantly reduced the expression of il1β, il8,mcp-
1 and tnf-α (Figures 3d and S5).
Compound 2 was able to strongly inhibit the growth of

leukemia, melanoma and breast cancer cell lines in the NCI-60
antiproliferation screen50 (Table S3), in agreement with the
published anti-proliferative effects of CBP/EP300-BRD inhib-
itors in leukemia lines.24,25,51 It was, thus, not surprising to
observe a reduction in THP-1 cell proliferation following a 3 day
treatment with all of our tested compounds (Figure 3e), likely
due, at least in part, to their effects on myc expression (Figure
2e,g). To determine if these compounds are generally cytotoxic,
their anti-proliferative effects were also investigated in MRC5
cells, a lung fibroblast line derived from normal tissue.52 In these
non-cancerous cells, the anti-proliferative effect of CBP/EP300-
BRD inhibition was almost completely lost (GI30 > 10 μM [2, 5
and GNE-272]), in contrast to A485 which continued to be
toxic even at lower concentrations (GI30 = 1.2 μM, Figure 3f).
These results demonstrate that inhibiting the CBP/EP300-BRD
and HAT domains strongly interferes with the initiation of the

inflammatory cascade, and highlight the reduced general
cytotoxicity of targeting the BRD rather than the catalytic
HAT domain of CBP/EP300.
Development of a Lymphatic Model of TNF-α-Induced
Inflammation

To evaluate the anti-inflammatory effect of the BRD inhibitors 2
and 5 in vivo, we developed a novel murine model of TNF-α-
induced inflammation in the lymphatic system by injecting
300 ng of recombinant murine TNF-α (rmTNF-α) subcuta-
neously (s.c.) into the mouse footpad (Figure S7a). We have
previously applied a similar approach to study the induction of
local inflammation mediated by IFN-β and IL-1α.53 We expect
that after injection rmTNF-α will be transported via lymphatic
drainage to the popliteal lymph node (pLN), where it will trigger
an inflammatory response (Figure S7a), and indeed we observed
a significant increase in the secreted levels of the inflammatory
cytokines IL-1α, MCP-1, IL-6, IL-17a and TNF-α at 3 h post-
administration of 300 ng of rmTNF-α (Figure S7b).
Furthermore, there was a trend towards increased secretion of
IL-1β but the effect after 3 h was not statistically significant
(Figure S7b).

Figure 4. CBP/EP300-BRD inhibition reduces TNF-α-induced inflammation in vivo. (a) Schematic representation of the experimental set-up. Mice
were injected s.c. (footpad) and i.p. with 300 ng of rmTNF-α 90 min before administering s.c. (footpad) and i.p. 10 μL each of the CAPTISOL (abbr.
Cap) solutions of 2 (160 ± 1 μM), 5 (790 ± 18 μM) or GNE-272 (715± 12 μM) (abbr. GNE). Organs were collected for analysis 5 h post-rmTNF-α
administration. Total concentration of IL-1β (b), MCP-1 (c), IL-1α (d), and IL-6 (e), and flow cytometry analysis showing the absolute counts of total
lymphocytes (f), T cells (g), dendritic cells (h), and neutrophils (i) in the pLN.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.5c00085
JACS Au 2025, 5, 2491−2499

2495

https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c00085/suppl_file/au5c00085_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.5c00085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.5c00085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.5c00085?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.5c00085?fig=fig4&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.5c00085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


CBP/EP300-BRD Inhibition Reduces TNF-α-Induced
Inflammation

To confirm if 2 and 5 were able to inhibit the production of the
previously described inflammatory cytokines, we administered
12.5% CAPTISOL solutions of CBP/EP300-BRD inhibitors at
different concentrations (Table S4) by s.c. (footpad) and
intraperitoneal (i.p.) injection 90 min after rmTNF-α, which
was also administered s.c. in the footpad and i.p (Figure 4a). We
then measured the concentration of several inflammatory
cytokines in the pLN at 5 h post-rmTNF-α administration
using the LEGENDplex assay (Biolegend). Following this
approach, we observed a significant reduction in the
concentrations of the inflammatory cytokines IL-1β, MCP-1,
IL-1α and IL-6 in the groups treated with 2 or 5, compared with
the group injected with rmTNF-α and CAPTISOL (Figure 4b−
e). The magnitude of the reduction was equivalent to that with
GNE-272 for all cytokines except for IL-6, for which we could
observe a more considerable decrease with 2 (4-fold) and 5 (7-
fold) compared to GNE-272 (Figure 4e). The observed
reduction in cytokines may result from the inhibition of the
NFκB pathway, as per our in vitro studies, as the IL-1 family has
been reported to be linked to this pathway54 and the induction
of IL-6 release by TNF-α has been previously associated with the
inhibitory kappa B (IκB)-NFκB, p38 mitogen-activated protein
(MAP) kinase and stress-activated protein kinase (SAPK)/c-Jun
N-terminal kinase (JNK)55 pathways. The immunomodulatory
effects of CBP/EP300-BRD inhibition are highlighted here by
the inhibition of MCP-1 (CCL2), a potent chemoattractant
responsible for the recruitment of monocytes/macrophages to
the lymphatic compartment.56 Moreover, these inhibitors
additionally reduce the TNF-α-induced production of the
pleiotropic cytokine IL-6 whose dysregulation is associated with
the progression of several diseases such as diabetes, RA, and
Crohn’s disease.57

To further characterize the action of the tested compounds on
the immune system, we also performed flow cytometric analysis
of the immune cell population in the pLN at 5 h post-injection of
rmTNF-α in the presence or absence of 2 or GNE-272.
Interestingly, we found that both compounds significantly
inhibited the recruitment of lymphocytes, including T and B
cells (Figures 4f,g and S7c, respectively), as well as dendritic cells
(DC) and neutrophils (Figure 4h,i, respectively), compared to
the control group. Furthermore, we could observe a significant
reduction in recruitment of both CD11b- and CD11b+ DC
subpopulations (Figure S7d,e). This effect could be beneficial
for the treatment of autoimmune inflammatory conditions such
as RA, in which neutrophil depletion has been associated with
the amelioration of disease severity in an experimental arthritis
mouse model.58

■ CONCLUSIONS
While CBP/EP300 are known to play a role in NFκB activity in
inflammation, the involvement of their BRD in these
mechanisms is much less established and inconclusive. Here,
we developed a novel, structurally distinct class of CBP/EP300-
BRD binders featuring a 3-methylcinnoline as an acetyl-lysine
mimicking fragment. This motif, identified in silico by library
docking was used as the basis for a structure-based hit-to-lead
optimization, culminating in highly potent, selective, and cell
permeable compounds. The introduced structural novelty
affords a distinct selectivity profile, with identified off-targets
differing from other published inhibitors utilizing different

acetyl-lysine mimics, for example GNE-272 and SGC-
CBP30.25,36 With our cinnoline derivatives 2 and 5, we have
demonstrated both in vitro and in vivo that the CBP/EP300-
BRD plays a critical role in regulating TNF-α-induced NFκB
activity. Our results demonstrate that inhibition of the CBP/
EP300-BRD interferes with the inflammatory pathways
triggered by TNF-α, thus reducing cytokine expression,
production, and the subsequent recruitment of immune cells.
As similar results were obtained with GNE-272, a reported
structurally distinct chemical probe, this adds confidence that
the observed effects are due to on-target engagement of the
CBP/EP300-BRD. This work provides tool compounds to
further unravel the mechanism through which the CBP/EP300-
BRD affects NFκB activity, to identify other pathways through
which CBP/EP300-BRD affects inflammatory gene expression,
and to determine the contribution of the CBP/EP300-BRD to
TNF-α-mediated disease in a more physiological context. The
absence of in vitro cytotoxicity of our CBP/EP300-BRD
inhibitors opens a promising avenue for the treatment of acute
inflammation and for clinical applications in RA or other TNF-
α-mediated diseases.

■ ASSOCIATED CONTENT
Data Availability Statement

The X-ray structural data of CBP-BRD complexed with ligand 1
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database under accession code 6SQM.This data can be obtained
free of charge from RSCB Protein Data Bank via http://www.
rcsb.org. The authors declare that the data supporting the
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HPLC traces are available in the Supporting Information. Data is
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