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ABSTRACT: A free energy-guided sampling (FEGS) method is proposed for accelerating exploration of conformational space
in unbiased molecular dynamics. Using the cut-based free energy profile and Markov state models, FEGS speeds up sampling of
the canonical ensemble by iteratively restarting multiple short simulations in parallel from regions of the free energy surface
visited rarely. This exploration stage is followed by a ref inement stage in which multiple independent runs are initiated from
Boltzmann distributed conformations. Notably, FEGS does not require either collective variables or reaction coordinates and can
control the kinetic distance from the starting conformation. We applied FEGS to the alanine dipeptide, which has a human-
comprehensible two-dimensional free energy landscape, and a three-stranded antiparallel β-sheet peptide of 20 residues whose
folding/unfolding process is governed by a delicate interplay of enthalpy and entropy. For these two systems, FEGS speeds up
the exploration of conformational space by 1 to 2 orders of magnitude with respect to conventional sampling and preserves the
basins and barriers on the free energy profile.

■ INTRODUCTION
Molecular dynamics (MD) simulations are a powerful tool for
studying (macro)molecular structure and flexibility, as they
generate atomistic details of system evolution. In principle, if
MD simulations are run long enough, all of the relevant states
are visited and the population converges to the (global)
equilibrium. In practice, computer hardware and the complexity
of the system limit the simulation time. Even though the
reversible folding of structural peptides and small proteins has
been investigated by millisecond MD simulations with explicit
water1 and implicit solvent,2 inadequate sampling is still the
largest source of errors in MD simulations.
Sampling can be hindered by deep enthalpic basins on the

free energy surface,3 and long simulation time will be consumed
for the system to escape from these enthalpic traps. The ex-
cessive sampling in these traps does not help to understand the
transitions among states, because those transitions are usually
slow and associated with high energy barriers out of those traps.
Several methods have been developed to deal with the sampling
problem. In one class of methods, e.g., replica exchange MD
(REMD),4 high temperatures are used to cross the enthalpy
barriers, low temperatures are employed to sample the detail of
the free energy landscape, and a random walk in temperature
space maintains canonical sampling at each temperature. Re-
cently kinetic network models have been introduced to extract
kinetics from REMD sampling5 and to optimize the parameters
of REMD.6 However, the entropic part of the temperature-
dependent transition rate (ka(T) = k0 exp(ΔS/kB) exp(−ΔH/
kBT)) is unaltered by increasing the temperature.7 In practice, if
the goal is the single-temperature sampling, its efficiency will be
immediately decreased by a factor corresponding to the number
of replicas, which is usually large for systems with explicit
solvent.8−10 Therefore, it is very difficult for REMD to gain
more than an order of magnitude speedup at physiological
temperature.7

Another class of methods is noncanonical sampling where
a bias is introduced to increase the possibility of slow

conformational transitions. The bias often depends on a finite
number of predetermined degrees of freedom (e.g., collective
variables in metadynamics and path-optimization approaches)
that can describe transitions of interest.11−15 In those methods,
the choice of variables is nontrivial, since only the immediate
vicinity of the path determined by collective variables can be
meaningfully investigated. Nonetheless, in the glassy region of
the free energy surface, the transitions are involved in a large
variety of paths with similar energy profiles,16 which, in theory,
demand the use of a large amount of collective variables. In
practice, the calculation increases exponentially with the amount of
collective variables, because the biases have to be added to the
potential function. Recently, Tribello et al. developed reconnais-
sance metadynamics, which allows one to bias the free energy
profile efficiently with a very large number of low-dimensional
and locally valid collective variables.17 However, collective variables
and biases still have to be implemented in MD simulation codes.
The Markov State Model (MSM) is an elegant and useful

tool to investigate systems that undergo (large-scale/long-time
conformational) transitions.18−21 By using the MSM, the
weight of each state in equilibrium MD can be estimated by
long-term distribution of each state in the MSM. The global
equilibration is not required anymore. Moreover, the kinetic
distance can be estimated by the mean first passage time
(mfpt).19 On the basis of MSMs, Huang and co-workers have
developed the adaptive seeding method (ASM) for sampling
the folding/unfolding dynamics of biological systems, which
shows that MSMs can be used to recover the correct equilib-
rium populations from nonequilibrium simulations.22 In ASM,
high temperatures are used to flatten the enthalpy traps and
obtain the broad sampling; therefore, the sampling range is
difficult to control. The method is appropriate for complete
folding/unfolding processes (e.g., eight-nucleotide RNA hairpin
5′-GCUUUUGC-3′ shown in ref 22) but is expected to be less
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adequate for local movement, e.g., protein conformational
transitions23,24 and ligand binding/unbinding.25−28 In general,
it is difficult to control the range of sampling in methods that
make use of enhanced simulation temperature.
In this paper, we propose a method for constant-temperature,

unbiased, reaction-coordinate-free, and range-controlled MD
sampling guided by the barrier-preserving, cut-based free
energy profile (cFEP)29,30 determined on the fly. The method
is termed free energy guided sampling (FEGS). We show that
FEGS does not require sampling at unwanted temperatures,
oversampling at the enthalpic traps, or the choice of collective
variables. Moreover, the sampling can be restricted within the
kinetic range of interest. Importantly, the convergence of the
free energy profile30,31 can be used to indicate the sufficiency
of sampling.
To evaluate the efficiency and the accuracy of FEGS, two

systems are investigated: (1) The first is the alanine dipeptide,
which can be completely sampled and whose free energy
landscape can be projected onto the human-comprehensible
Ramachandran map (ϕ,ψ-map).32 For the alanine dipeptide,
the free energy landscape produced by FEGS is shown to
converge much faster than by conventional sampling (CS).
(2) The second is a 20-residue β-sheet peptide (Beta3s),33,34

which folds reversibly to its correct NMR structure with an
efficient implicit solvent model,35 and whose folding process can
be described as a delicate balance of enthalpy and entropy.31 For
these two systems, FEGS visits clusters of conformations and
generates a converged cFEP much more efficiently than CS.

■ METHODOLOGY
FEGS. The sampling can start from a single conformation or

an ensemble of structures (e.g., an energy minimized crystal
structure or NMR conformer bundle). For efficiency, two
iterative sampling stages are used: the exploring stage and the
refining stage (Figures 1 and 2).

In the exploring stage, the system is driven kinetically as far
as possible from the starting conformation. The distance is
measured with mfpt calculated using the MSM. The general
strategy is as follows: (e1) start nexpl simulations from the initial
conformation; (e2) cluster snapshots into mesostates; (e3)
build an MSM and calculate the equilibrium population of
each mesostate; (e4) sort mesostates by mfpt to the starting

conformation; (e5) calculate cFEP; (e6) restart nexpl simulations
from the barriers farthest to the starting conformation (the
green square in Figure 1); (e7) continue with step e2 until the
maximum of mfpt reaches the cutoff, or the maximal time of
exploration is reached. The free energy barriers can be over-
come in the exploring stage because the simulations are started
from the kinetically farthest regions. In the canonical ensemble,
the system rarely visits those regions, and as a consequence the
transitions over high barriers are extremely rare events.12,36

However, most of the mesostates (i.e., details of the free energy
landscape) between the starting state and the farthest state are
overlooked in the exploring stage.
In the refining stage, overlooked mesostates are sampled

extensively. The choice of restarting conformations for the next
iteration of sampling is as follows: instead of selecting the
farthest barriers, nref MD runs are initiated from conformations
that are equally distributed along the cFEP (red squares in
Figure 1). The refining stage stops when the cFEP converges,
which can be checked automatically by measuring the
covariance of the latest free energy profile and the previous
one. The sampling can also re-enter the exploring stage during
or after the refining stage if the mfpt value of the kinetically
farthest mesostate is smaller than the cutoff. This re-entering
could happen because, as more sampling data are used for
building the MSM, the mfpt becomes more accurate. By re-
starting sampling iteratively, the system will not be trapped into
the deep free energy basins (Figure S1 in the Supporting
Information). The simulation time for sampling will be equally

Figure 1. Schematic illustration of the selection of restarting
conformations in FEGS. The black curve is the cFEP calculated

Figure 2. Schematic illustration of two-stage sampling of free energy
landscape by FEGS. The starting structure is shown here in the center
of the grid (blue dot). In the first exploring stage, the sampling moves
away from the starting structure (light green arrows). Then, in the
second exploring stage (dark green arrows), the MD runs start from
the furthest conformation obtained previously. After reaching the mfpt
cutoff (blue arrow), the first and second steps of refining (light and
dark red arrows, respectively) start from conformations according to
their Boltzmann probabilities. Gray squares are the conformational
space beyond the mfpt cutoff. No further sampling will start from
these gray squares, even though they have been visited by an
exploring/refining sampling (red “×” at top right corner).
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distributed on the conformational space. The algorithm is
summarized in the flowchart in Figure 3.

For the simulations of local motion, e.g., loop conformational
transition and ligand binding/unbinding, the kinetic range of
sampling can be controlled with mfpt. The system quickly
jumps across free energy barriers and reaches the farthest
conformation within interesting mfpt range in the exploring
stage. To efficiently push the system far away from the starting
conformation, short simulations are used in the exploring stage
because, like CS, long simulations can be easily “trapped” by
enthalpic basins and hence cannot effectively explore the free
energy landscape. Restarting sampling frequently at the barrier
furthest from the initial conformation gives a greater chance to
reach the unvisited regions than continuous samplings. After
the border of interesting mfpt is reached, the refining stage
starts (red arrows in Figure 2). At each refining stage, nref
simulations are initiated from conformations with their
Boltzmann probabilities, which are calculated from the previous
trajectories. All of the information from previous samplings is
taken into account for guiding the samplings toward the
equilibrium. Note that interim Boltzmann probabilities are not
necessarily accurate but will eventually converge to the accurate
one as more mesostates are discovered,21 and the precise tran-
sition probabilities among them are iteratively approached.
That is, the free energy profile does not change much between
successive iterations of refining.
Markovian State Models from Multiple MD Trajecto-

ries. The time scale of in silico simulations is usually much
shorter than the time scale of biological interest. MSMs are a
powerful tool used to predict long-term properties (both

population of each state and kinetics) of a system that cannot
be simulated adequately with present computers. To build
MSMs, the simulated system needs to be locally equilibrated.22

In FEGS, multiple independent constant temperature MD runs
are initiated from a single conformation. Thus, the transition
network29,31,37 is intrinsically connected, and MSMs can be
straightforwardly built from this network. Formally, the tran-
sition network extracted from MD trajectories is directed. That
is, let nij be the absolute number of transitions from mesostate i
to mesostate j; nij and nji are not necessarily equal. However,
in a closed, isolated, and classical system, the detailed balance (nij =
nji) always holds,

38 and the directed graph can be simplified to an
undirected graph. In practice, due to incomplete sampling, it is
quite often the case that the transition network satisfies neither
detailed balance nor ergodicity.39 The arithmetic average of nij
and nji is commonly used as the number of transitions between
mesostates i and j in the undirected graph.40 Nevertheless, this
averaging imposes the long-term equilibrium which is adequate
only for extensive sampling very close to it.39 In FEGS, the
following approach is used to generate an irreducible graph
from a reducible graph without discarding any sampled confor-
mations. In a reducible graph, the transition network is weakly
connected (i.e., there are pairs of mesostates i and j, for which
nij > 0 but nji = 0). If forward transitions (i → j) are observed,
but no backward transition (i → j), a single backward
transition, which is physically the observable minimum, is
added nji = 1 (Figure S2 in the Supporting Information). By
this postprocessing, the transition network becomes strongly
connected or ergodic, and the system being studied can be
formalized as a finite, homogeneous, and regular Markov chain.
The transition probabilities can be calculated as Tij = nij/∑knik,
where T is the transition (probability) matrix. The steady state
of the Markov chain Π (π1, π2, ..., πn) can be determined by
solving the system of linear equations Π = ΠT, where πi is the
steady (long-term) distribution of mesostate i.41 Utilizing all
visited mesostates, this postprocessing approach makes FEGS
efficient in exploring the conformational space. Note that the
statistical error introduced by adding a backward transition will
lead the simulation to start from unsampled regions and will be
corrected in the following iterations of the FEGS protocol. The
aforementioned approach is only used for building interim
MSMs to guide samplings. These MSMs do not necessarily
represent the quantitatively accurate kinetics of the system.
Finally, an accurate free energy profile can be attained using the
largest ergodic component identified by Tarjan’s algorithm to
preserve the statistics of the original network.39,42

■ RESULTS AND DISCUSSION
Alanine Dipeptide. To illustrate the efficiency of FEGS, we

compared the evolution of the free energy surface calculated by
CS and FEGS (Figure 4). At the beginning of the CS, the
system remained trapped mainly in the region with ϕ < 0°.
Strikingly, after 5 ns, FEGS visited all of the four free energy
minima. Since 100 ns, the free energy surface sampled by FEGS
had essentially converged, while the one sampled by CS had
not yet visited the αL region.
The one-dimensional cFEP can be used to quantitatively

analyze the transition network of the alanine dipeptide.29 The
height of the barriers and the population of the basins as
sampled by CS and FEGS are essentially identical (Figure S3 in
Supporting Information).
To evaluate the speedup of FEGS with respect to CS, we

plotted the ratio of the time needed for the system to visit a

Figure 3. Flowchart of the FEGS method. FEGS requires only a
starting structure and a value of mfptmax.
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certain number of clusters defined as bins of size 1° on both ϕ
and ψ angles of the Ramachandran map. The speedup of FEGS
did not reach 10-fold until the first 60 000 clusters were visited
(Figure S4 in the Supporting Information) because at the
beginning of the sampling both methods were trapped in the
C7eq region, where the simulations were started. In FEGS, the
system escaped this first basin when most of the clusters in it
were visited. After sampling about 75 000 clusters, the system
sampled by FEGS escaped the ϕ < 0° half of the map and
maximized the speedup. The unsupervised learning protocol of
FEGS helps the system to find the positions of restart sam-
plings for quickly escaping the present basin. The more data the
transition network contains, the more accurate restarting
positions it will suggest, and thus the larger the possibility of
escaping the basin. This is the reason that in the early stage
of sampling, the speedup of FEGS is not significant. Once
any one of the independent MD runs of a FEGS iteration
succeeds to escape the basin spontaneously, others will
start from the region out of the basin in the next iteration
of FEGS. The speedup decreases from its maximum 77-fold
to about 50-fold as the sampling is elongated because it
becomes more and more difficult to find an unvisited cluster
in the relatively narrow conformational space of the alanine
dipeptide.

Beta3s Peptide. Folding of the 20-residue β-sheet peptide
Beta3s (whose sequence in one-letter code is TWIQNGSTK-
WYQNGSTKIYT) has been extensively investigated by MD
simulations.5,30,31,34,40,43−45 Using CS and an implicit solvent
model,35 Beta3s folds reversibly from its heterogeneous de-
natured state to its native structure, a three-stranded antiparallel
β-sheet.33

The FEGS protocol consisted of 50 iterations of exploration
containing 100 independent simulations of 100 ps each, and
12 iterations in the refining stage containing 100 indepen-
dent 20-ns simulations each. In the exploring stage and the
beginning of refining stage, the cFEP fluctuated because of
insufficient statistics (Figure S5 in the Supporting Information). In
the exploring stage, the covariance between cFEPs obtained at
consecutive iterations showed a large variability ranging from
−0.06 to 0.37. The cFEP converged, as more trajectories were
iteratively appended for calculating the transition matrix. After the
55th iteration, the covariances were always larger than 0.42 (Figure
S6 in the Supporting Information).
FEGS is about 1 order of magnitude faster in sampling of

mesostates and transitions for building a converged MSM than
CS (Figure S7 in the Supporting Information). Without being
trapped in enthalpic basins, compared to CS, FEGS needed less
CPU time to visit a similar amount of mesostates and to
observe a similar number of transitions for Beta3s (Table 1).

Moreover, FEGS has good reproducibility. To check the
convergence, five FEGS runs of 24.5 μs each were started from
the native structure of Beta3s. In those five FEGS runs (with
different random seeds for assigning initial velocities in the first
exploring iteration), the standard deviation of the populations
of the native basin and the helical basin, which is kinetically
farthest from the native conformation, are 1.1% and 2.9%,
respectively (Figure 5). The standard deviation of the heights of
the free energy barriers that separate these two basins from
the rest of the free energy surface are 0.07 and 0.09 kcal/mol,
respectively (Figure S8 in the Supporting Information). The
secondary structural annotation of each mesostate shows that
cFEP can cluster trajectories generated by both FEGS and CS
into kinetically relevant states. From the native basin, the
kinetic ordering of states was similar in both algorithms, but
the CS stayed longer than the FEGS in the native basin,
where the sampling started. Thus, very large mesostates in
the native basin were observed in the cFEP obtained by CS
(Figure 5). Due to the dependence of native basin size on
the simulation length in CS (Figure S9 in the Supporting
Information), very long runs have to be carried out to
attenuate the effects of the identical, rather than Boltzmann

Figure 4. Comparison of CS (left) and FEGS (right) of the alanine
dipeptide. The contour plots show that the CS is slower than FEGS in
leaving the α-helical (termed αR, ϕ < 0° and −60° < ψ < 0°) and β-strand
(termed C7eq, ϕ < 0° and 0° < ψ < 180°) regions. The regions of C7ax and
αL (ϕ > 0°) are sampled much more efficiently by FEGS than CS. A
movie clip (Mov S1) that shows the efficiency of FEGS is included
in the Supporting Information. Each iteration in the exploring stage
of FEGS consists of 10 independent MD runs of 10 ps each, while
each iteration in the refining stage consists of 1000 MD runs of
20 ps each. The exploring and the refining stages contain 50 and
57 iterations, respectively.

Table 1. Comparison of Transition Matrix between FEGS
and CS

sampling type FEGS CSa

length of simulation (μs) 24.5 22 22 44
number of mesostates 321349 171402 180582 311674
number of nonzero
elements in transition
matrix

2194315 970548 1057461 2033897

ratiob 6.83 5.66 5.86 6.53
aTen independent CSs were initiated from the NMR native conformation.
Every sampling generated a 4.4 μs trajectory. For evaluating convergence, the
10 trajectories were separated into two groups, each of which contained five
trajectories (22 μs in total). bThe ratio of the number of nonzero
elements in the transition matrix and the number of the mesostates.
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distributed, starting conformations.39,46 In contrast, FEGS
quickly loses the bias due to a single starting structure
because it iteratively restarts from the MSM estimate of the
Boltzmann distribution.

■ CONCLUSIONS

We have introduced the FEGS method which uses the cut-
based free energy profile and Markov state model to efficiently

explore the conformational space of peptides and proteins by
conventional MD. The efficiency and accuracy of FEGS was
demonstrated by applications to the alanine dipeptide and
reversible folding of a 20-residue β-sheet peptide. The former
illustrates in a human-comprehensible manner its speedup
efficacy, as the two-dimensional free energy surface converges
faster by more than 1 order of magnitude for FEGS than CS.
The latter peptide is a challenging system because of the

Figure 5. Comparison of CS and FEGS of Beta3s. Both CS and FEGS started from the native structure (top left). All cFEPs are plotted using the native
state as a reference. The population of the native basin, which is the basin on the left up to the first energy barrier, is denoted in percentage on each cFEP.
(Top) Each of the two cFEPs was calculated using 22 μs of CS obtained by five independent MD runs of 4.4 μs each. (Middle and bottom) Each of the
five cFEPs was calculated using 24.5 μs of FEGS. The upper part of each panel (with the sequence of the Beta3s on the y axis) shows the colored DSSP52

strings of the cluster representatives, which are arranged according to the reaction coordinate of the cFEP. The legend of colors for different secondary
structure elements in the traces is indicated in the bottom right panel. FEGS shows a remarkable convergence of the cFEP. In contrast, CS does not seem
to have converged (see also Figures S8 and S9 in the Supporting Information).
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complex denatured state consisting of enthalpic traps and an
entropically stabilized non-native helical basin. FEGS generates
a converged cFEP of Beta3s by sampling mesostates about 1
order of magnitude faster than CS. The two applications
presented here used implicit solvent simulations of peptides
because the free energy surface can been fully characterized. Yet
extension to explicit water simulations is straightforward, and
we are currently using FEGS to sample the conformational
space of the catalytic domain of a tyrosine kinase which will be
reported elsewhere.
The FEGS method is a bias-free and reaction-coordinate-free

approach. FEGS samples heuristically, and no additional in-
formation is needed except for a starting conformation. Since
FEGS does not need to bias the energy function, the simulation
code, force field parameters, and/or coarse-grained models do
not need to be modified. It samples at the temperature of
interest and does not visit regions of conformational space
populated only at elevated temperatures. The sampling con-
trolled by mfpt also makes possible investigating local move-
ments, such as ligand binding/unbinding and conformational
transitions involving localized structural elements. The FEGS
protocol uses MD simulation programs solely to generate
trajectories. More precisely, it provides initial conformations for
the iterative restarting of simulations and does not modify the
kernel of the simulation codes (e.g., energy functions, inte-
gration algorithms). Thus, it can straightforwardly be employed
with the majority of MD programs. Moreover, FEGS could be
used with Monte Carlo methods by taking into account that the
mfpt would not be a physical time but an effective kinetic
distance. Finally, FEGS can be accomplished in an embarrass-
ingly parallel way and is suitable for running on modern
computer clusters.

■ APPENDIX

Simulation Setup
The MD simulation protocols of CS and FEGS are identical.
For the alanine dipeptide, Langevin dynamics with a friction
coefficient equal to 50 ps−1 was used. The trajectories at 300 K
were generated with the CHARMM47 program using polar
hydrogen energy function PARAM19 and saved every
integration step (2 fs). The SHAKE algorithm was applied to
hydrogen atoms.48 The effective solvation free energy was
approximated with the SASA implicit solvation model.34 The
reference cFEP and the ϕ,ψ map under the global equilibrium
were generated using a 4-μs trajectory (a total of 2 × 109

conformations were analyzed).
The MD simulations of the three-stranded β-sheet peptide

Beta3s were performed using the Leapfrog algorithm
implemented in CHARMM with the PARAM19 and the
SASA solvation model. The temperature was controlled with
the Berendsen thermostat (coupling every 5 ps) at 330 K. By
applying the SHAKE algorithm, a time step of 2 fs was used,
and the trajectories were saved every 0.2 ps for a total of about
1 × 108 snapshots.

Simulation Detail
The alanine dipeptide snapshots were binned using 1°
resolution on both ϕ and ψ angles of the Ramachandran
map. For Beta3s, the WORDOM49 implementation of the
sequential leader-like clustering algorithm was used with a
threshold of 2.5 Å on the pairwise coordinate root mean square
deviation of the unsymmetrical heavy atoms of residues 3 to 18.

Mean First Passage Time (mfpt)
Given the transition matrix T of the MSM, the mfpt of
mesostate i to the reference mesostate A is the solution of the
linear equations mfpti = Δt + ∑j (Tij × mfptj) with an
initial boundary condition mfptA = 0,50 where Δt corresponds
to the lag time used for building the MSM.

Cut-Based Free Energy Profile (cFEP)
The input for the cFEP calculation is the network of
conformational transitions, which is derived from the direct
transitions between clusterized snapshots (mesostates of the
network) sampled at a given time interval (2 fs for alanine
dipeptide and 0.2 ps for Beta3s) along the MD simulations. For
each mesostate, mesostates are partitioned into two groups
using the values of the mfpts to the reference mesostate to
define a cut. The free energy is related to the flow across the cut
and approximated as ΔG = −kT ln ZAB where ZAB is the
partition function of the mfpt-based cutting surface (for further
details, see ref 29−31). The result is a one-dimensional profile
along a reaction coordinate (the relative partition function) that
preserves the barrier height between well-separated free energy
basins.

Markovianity Test
The Markovian property is not critical for the interim MSMs, as
the sampling itself is not the final one. Yet the Markovianity of
the models built after each iteration was evaluated by
calculation of the non-Markovian flux,19 which is a variant of
the Chapman−Kolmogorov test.51 The non-Markovian flux of
the MSMs (with lag time equal to the saving interval) was
always below 5% during the exploring stage, and in the last
refining iteration it was 0.057% and 2.0% for the alanine
dipeptide and Beta3s, respectively.
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