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 Fast Analytical Continuum Treatments of Solvation  

  Fran ç ois   Marchand   and   Amedeo   Cafl isch   

       9.1 

 Introduction 

 Successful applications of  molecular dynamics  ( MD ) to study the structure and 
function of a biomolecule depend on the quality of the underlying  force fi eld  and 
the sampling effi ciency of the simulation protocol. In particular, an accurate rep-
resentation of the  aqueous solvent  environment is important to reproduce the 
structural, functional, and dynamic behavior of  soluble biomolecule s. The most 
realistic and physically rigorous way to treat solvation effects is to include explicitly 
the  solvent molecule s in the simulation system, at the price of high computational 
cost. In fact, the solvent molecules greatly increase the number of  degrees of 
freedom  and interaction centers. Even with today ’ s computational infrastructure, 
simulations of single - domain proteins (about 100 residues) cannot sample more 
than 0.1 – 1    µ s. Such a short time scale prohibits the study of long - time processes 
like  protein folding , large - scale  structural transition s, multimeric assembly proc-
esses like  complex formation  and  protein aggregation , as well as the derivation of 
accurate thermodynamic quantities. This computational drawback has motivated 
the development of fast  implicit solvent  models  [1 – 3] , where the mean infl uence 
of solvent molecules around the solute is described by a potential of mean force 
that depends only on the atom coordinates of the solute  [2, 4] . An implicit solvent 
model not only considerably reduces the system size, but also avoids the need to 
average over the extremely large number of solvent confi gurations, and reduces 
the viscosity of the solvent environment by eliminating the friction from the 
solvent molecules, thus accelerating molecular motions  [5] . Furthermore, such a 
model directly yields the so - called  effective energy , which is the sum of the solute 
 potential energy   in vacuo  and the  solvation free energy . In contrast, explicit water 
simulations have to be post - processed, for example by fi nite - difference  Poisson –
 Boltzmann  calculations, to obtain the effective energy. 

 The overall free energy cost of solvating a solute molecule ( ∆  G  solv ) is decomposed 
into a non - polar component and a polar component in most implicit solvent 
models  [2] :  ∆  G  solv    =    ∆  G  pol    +    ∆  G  nonpol . The term  ∆  G  pol  is the free - energy change in 
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the system resulting from the electrostatic interactions. The reorientation and 
polarization of the individual molecules in the medium cause the solvent to 
act on the polar contribution in two ways: fi rst, it interacts directly with the indi-
vidual charges, giving rise to the so - called  self - energy  contribution to the total free 
energy of the system; and second, it screens the strength of the  Coulomb interac-
tion s between charges in the macromolecule. The term  ∆  G  nonpol  is the free energy 
of introducing the solute into the solvent when the electrostatic interactions 
between the solute and solvent are turned off. It can be further decomposed into 
a cavity formation term ( ∆  G  cav ) and a solute – solvent  van der Waals dispersion term 
( ∆  G  VDW )  [6] . 

 Implicit solvent models can be classifi ed into three main families:  surface area  
models  [7 – 9]  (which are the simplest and were developed fi rst), Gaussian solvent -
 exclusion models  [10, 11] , and dielectric continuum electrostatics models. The 
latter can be further classifi ed into fi nite - difference  Poisson – Boltzmann  ( PB )  [12]  
and  generalized Born  ( GB )  [13, 14]  models. While  PB model s are more accurate 
than  GB model s, they suffer from high computational cost and diffi culties in the 
derivation of forces. The GB model is related to the PB model but contains several 
approximations that increase the speed of calculation. There exist models that 
combine the different approximations, like  “ generalized Born surface area   ”  
(GBSA)  [15 – 17] , where the polar part is treated through the GB formalism and the 
non - polar part through a surface area term. 

 Here, two fully analytical implicit solvent models are reviewed, the  SASA  ( “ sol-
vent - accessible surface area   ” ) model  [18] , a surface area model, and the  FACTS  
( “ fast analytical continuum treatment of solvation ” ) model  [19] , a recently intro-
duced GBSA method. SASA and FACTS are both very effi cient (only about 1.5 
and 4 times slower, respectively, than  in vacuo ) and have been implemented in 
CHARMM  [20] . Because they are fully analytical energy functions, analytical force 
vectors and the Hessian matrix of second derivatives, which is used in techniques 
like  normal - mode analysis  ( NMA )  [21, 22] , can be derived.  

  9.2 

 The  SASA  Implicit Solvent Model: A Fast Surface Area Model 

 It is assumed that the main contributions to the solvation energy are proportional 
to the  solvent - accessible surface area  ( SASA )  [7]  or  solvent - accessible volume   [10] . 
Several parameterizations have been proposed in the past  [7 – 9, 23] . The SASA 
model implemented in CHARMM makes use of a very effi cient analytical evalu-
ation of the SASA  [24]  and was parameterized for the polar hydrogen force fi eld 
(param19). In SASA, electrostatic screening effects are approximated by a distance -
 dependent dielectric function and ionic groups are neutralized  [11] . The surface 
area approximation is used for the direct solvation (both polar and non - polar) as 
introduced by Eisenberg and McLachlan  [7] . Because an exact analytical or numeri-
cal computation of the SASA is too slow to compete with simulations in explicit 
solvent, an approximate analytical expression  [24]  was used. This drastically 
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reduces the computational cost with respect to an explicit solvent simulation. The 
model discussed here is based on the assumptions that most of the solvation 
energy arises from the fi rst water shell around the protein  [7] , and that two atomic 
 solvation parameter s are suffi cient to describe the solvation of polar groups (nega-
tive, that is, favorable, surface tension - like parameter) and non - polar groups (posi-
tive surface tension - like parameter). 

 Here a description of the SASA implicit solvent model and its calibration is 
given. This is followed by a discussion on the limitations of the model and a review 
of its application in studies of  conformational transition s of structured peptide, 
aggregation  of peptidic systems, and  ligand – receptor interaction s. 

  9.2.1 
 Description of the Model 

 In most empirical force fi elds, the Hamiltonian of the solute – solvent system is 
additive and consists of the sum of  solute – solute,  solute – solvent, and  solvent –
 solvent terms. After integration over the solvent coordinates, the potential of mean 
force  W ( r ), or effective energy, can be divided into two contributions,

   W E Gr r r( ) = ( ) + ( )solute solv     (9.1)   

 for a solute having  N  atoms with Cartesian coordinates  r    =   ( r   i  ,  … ,  r   N  ). The term 
 “ effective energy ”  for  W ( r ) is used here as in Ref.  [11] ; it is the sum of intra - solute 
and mean solvation terms. In the present study, we assume that the mean solva-
tion energy is linearly related to the SASA of the solute:
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(9.2)

  

where   σ  i   and  S i  ( r ) are the atomic solvation parameter and SASA of atom  i , respec-
tively. The SASA  S i  ( r ) is computed by an approximate analytical expression  [24] :

   

S A p p b r Ai i i ij ij ij i

j i

N

r( ) = − ( )[ ]
≠

∏ 1
    

(9.3)

  

where  A i   denotes the SASA of an isolated atom  i  of radius  R i  ,

   A R Ri i= +( )4 2π probe     (9.4)  

and  R  probe  is the radius of the solvent probe. In Equation  9.3 ,  b ij  ( r ij  ) represents the 
SASA removed from  A i   due to the overlap between atoms  i  and  j  separated by a 
distance  r ij     =    |  r   i      −     r   j   |    and is given by
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 Using 270 small molecules, the atom type parameters  p i   and connectivity 
parameters  p ij   have been optimized to reproduce the exact SASA with  R  probe    =   1.4    Å  
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 [24] . The complete list of parameters can be found in the original publication 
 [18] . 

 The SASA model includes the free - energy cost of burying a charged residue 
in the interior of a protein. However, it does not take into account the  solvent 
screening  on the interactions between solute charges. This effect is approximated 
here using a distance - dependent  dielectric function ,   ε  ( r )   =   2 r  and was chosen 
instead of   ε  ( r )   =    r  mainly to reduce the strength of the hydrogen bonds. Larger 
values of the dielectric constant are expected to lead to partial unfolding of proteins 
in simulations at room temperature. A cutoff for long - range interactions is used 
(see below), so that a linear distance - dependent dielectric function does not differ 
signifi cantly from a more sophisticated one, such as a sigmoidal function  [25 – 27] , 
because the deviation from linearity is negligible for distances smaller than 
10    Å   [27] . A distance - dependent dielectric function is a very simplifi ed way of 
accounting for the solvent polarization effects on the solute. In particular, the 
screening of the electrostatic interactions between charged groups is insuffi cient, 
as shown by the formation of too stable salt bridges in  MD simulation s of the 
RGDW (Arg – Gly – Asp – Trp) peptide  [28] . The limitations of this approximation can 
be partly overcome by using a set of partial charges with a zero total charge for 
every residue. In the current SASA implementation, the ionizable  amino acid s are 
neutralized  [11] . 

 The solvation model has been implemented in CHARMM and is used with a 
polar hydrogen CHARMM force fi eld (param19), where the only modifi ed param-
eters are the partial charges of the ionic side chains  [11] . The CHARMM param19 
default cutoff for long - range interactions is used (that is, a shift function  [20]  is 
used with a cutoff at 7.5    Å  for both the electrostatic and van der Waals terms). This 
cutoff length was chosen to be consistent with the original parameterization of 
CHARMM param19  [20] . Even though the SASA solvation term is calculated at 
every dynamics step, the CPU time required for simulations with SASA is only 
about 50% larger than that for a simulation  in vacuo  with the same cutoff (7.5    Å ). 

 As in a previous work  [9] , only two   σ   parameters are considered in SASA: one 
for carbon and sulfur atoms (  σ   C,S     >    0), and one for nitrogen and oxygen atoms 
(  σ   N,O     <    0). The solvation parameter of the hydrogen atoms is set to zero. The two 
  σ   parameters were optimized from 1   ns MD simulations of six small proteins at 
300   K by a trial - and - error approach. The two resulting   σ   values that gave the 
minimal C   α     root - mean - square deviation  ( RMSD ) from the native state are 
0.012   kcal   mol  − 1     Å   − 2  for carbon and sulfur atoms, and  − 0.060   kcal   mol  − 1     Å   − 2  for nitro-
gen and oxygen atoms, and correspond to those determined previously  [9] . With 
this parameter set and the CHARMM param19 force fi eld, SASA seems to cor-
rectly model the strength of hydrogen bonds; the MD simulations of the six small 
proteins showed that SASA closely reproduces the number of hydrogen bonds 
present in the respective X - ray structure, while other solvent models or electro-
static treatment (often) overestimate it  [18, 29] . A correct treatment of the strength 
of hydrogen bonds is important to obtain meaningful energetics in  folding –
 unfolding  studies.  
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  9.2.2 
 Applications of the  SASA  Implicit Solvent Model 

  9.2.2.1   Reversible Folding of Structured Peptides 

 The combination of the fast implicit solvent SASA with the  united - atom force fi eld  
param19, which results in a 40% reduction of the number of atoms compared to 
all - atom force fi elds and makes use of short cutoffs, allows the fast and extensive 
sampling of the conformational space of small to medium - sized systems. One 
system that was thoroughly studied is  β 3s, a designed 20 - residue peptide whose 
solution conformation has been investigated by  nuclear magnetic resonance  
( NMR ) spectroscopy  [30] . The NMR data indicate that  β 3s in aqueous solution 
forms a monomeric triple - stranded antiparallel  β  - sheet, in equilibrium with the 
denatured state. In Rao and Cafl isch  [31]  the conformations sampled during long 
equilibrium folding – unfolding  MD simulations ( > 10    µ s in total) were mapped 
onto a network, with nodes representing clusters of similar conformations and 
links representing the observed transitions between nodes. With this representa-
tion, free - energy minima and their connectivity emerge without requiring projec-
tions onto arbitrarily chosen reaction coordinates (Figure  9.1 ).   As previously 
observed for a variety of networks as diverse as the Internet and the  protein inter-
action s within a cell, the conformational space network of polypeptide chains is a 
scale - free network, that is, the distribution of the number of possible connections 
of a conformation follows a power law. Interestingly, a correlation was found 
between the statistical weight (size of the node) and connectivity (number of links 
to a node)    –    the most connected nodes are also low - lying minima on the  free -
 energy landscape .   

 Another observation was that the native basin of the structured peptide shows 
a hierarchical organization of conformations. Such an organization was not 
observed for a random heteropolymer that lacks a native state (that is, a predomi-
nant free - energy minimum)  [31] . The network projection allows the representation 
of the complexity of the denatured state ensemble, which is very heterogeneous 
and includes high - entropy, high - enthalpy conformations as well as low - entropy, 
low - enthalpy traps. Furthermore, the network properties were used to identify 
transition - state conformations and two main average folding pathways. Such a 
complexity of the conformational space and kinetic pathways disappears in con-
ventional projections onto one or two progress variables  [32] . Other applications 
of SASA include the investigation of the folding mechanism of structured peptides  
 [33 – 36]  and small proteins  [37] , as well as the reversible mechanical unfolding of 
a helical peptide  [38] . MD simulations with SASA were used to interpret the kinetic 
behavior of a photo - switchable cross - linked   α  - helical peptide   [39]  and to test a new 
method to compute the  density of states  of proteins  [40] .  

  9.2.2.2   Peptide Aggregation 

 SASA was also successfully applied in aggregation  studies of amyloidogenic  pep-
tides. Simulations of the early steps of aggregation of amyloid - forming peptides 
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 Figure 9.1     Conformational space network of 
the designed three - stranded antiparallel 
 β  - sheet peptide  β 3s. Nodes represent 
conformations and links represent transitions 
between them, as sampled during 10    µ s 
implicit solvent molecular dynamics 
simulations at the melting temperature of 
330   K. The size and color of the nodes refl ect 
the statistical weight and average neighbor 
connectivity, respectively  [31] . Representative 
conformations are shown by a pipe colored 

according to secondary structure: white for 
coil, red for  α  - helix, orange for turn or bend, 
cyan for  β  - strand, and blue for the 
N - terminus. The variable radius of the pipe 
refl ects the structural variability of the 
snapshots within a node. The yellow 
diamonds are folding transition state 
conformations. HH, TR, TSE, and FS are the 
helical, trap, transition state ensemble, and 
folded states, respectively. Reproduced from 
 [31]  with permission from Elsevier. 
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using the SASA model have provided evidence of the importance of side - chain 
interactions  [41, 42] . Cecchini  et al.  devised a strategy where an amyloidogenic 
sequence is decomposed into overlapping short stretches, and then long MD 
simulations of multiple copies of each stretch are run in order to sample 
their tendency to build ordered parallel aggregates  [43] . The resulting amyloidog-
enicity profi les highlight so - called aggregation  “ hot - spots ” , short stretches that 
promote aggregation of full - length sequences (Figure  9.2 ). For one such system, 
the yeast prion Ure2p, this method was used to predict a double - point mutant 
with lower   β  - aggregation propensity  that was later confi rmed by an experimental 
test  [43] .    

  9.2.2.3   Other Applications 

 The SASA implicit solvent model was also used in the characterization of the 
unbinding mechanism of odorant molecules from the  odorant binding protein  

 Figure 9.2     The  β  - aggregation propensity 
profi le of the Alzheimer ’ s amyloid -  β  peptide 
(A β  42 ). The peptide was decomposed into a 
set of overlapping heptapeptide segments, 
each shifted by two residues along the 
sequence, and three copies of each segment 
were simulated at 310   K with param22 and 
TIP3P explicit water (blue), SASA (magenta), 
and FACTS param19 with   ε   m    =   1 and a 
surface tension - like parameter 
  γ     =   0.015   kcal   mol  − 1     Å   − 2  (cyan). Data from 
previous explicit water simulations were taken 
from Cecchini  et al.   [43]  (black squares). The 
simulations were started from a parallel 

in - register arrangement in the explicit water 
simulations and from a conformation in 
which all peptides were isolated from each 
other in the implicit solvent simulations. The 
 β  - aggregation propensity was calculated as 
the average of the nematic order parameter 

  P2   [44, 45]   , which was previously shown to 
describe the orientational order of the system 
and discriminate between ordered and 
disordered conformations  [46] . All simulations 
identify the central hydrophobic cluster 
H 13 HQKLVFFA 21  as a strong aggregation -
 promoting sequence. 
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( OBP )  [47] . MD simulations with SASA allowed the identifi cation of a consensus 
pathway for thymol unbinding from a rat OBP and the description of the 
associated conformational changes in the receptor. The  binding affi nity  calculated 
from  potentials of mean force  ( PMFs ) was comparable to the value measured by 
isothermal titration calorimetry.   

  9.2.3 
 Limitations of the  SASA  Implicit Solvent Model 

 The SASA model is not expected to describe correctly the stability of large proteins: 
fi rst, because the screening between partial charges does not depend on the local 
environment; and second, because it is unaffected by atoms that are near the 
surface but remain completely inaccessible to solvent. SASA should work best for 
small systems where most or all atoms are at least partially exposed. Limitations 
in modeling correctly the behavior of large systems is exemplifi ed in Ferrara  et al.  
 [18] , where MD simulations of three proteins    –    barnase (1a2p, 110 residues), hen 
egg - white lysozyme (1hel, 129 residues), and cutinase (1cus, 197 residues)    –    result 
in fast unfolding even at 300   K, with a C   α    RMSD from their respective native 
conformation above 3.5    Å . The fact that SASA is not appropriate for large systems 
is also refl ected in its evaluation as a scoring function for the CASP4 protein 
structure prediction competition, where its performance was lower than that of 
more sophisticated approaches like Poisson – Boltzmann or generalized Born 
methods  [48] . 

 Limitations for small systems were also apparent in the simulation of two 
designed mini - protein motifs BBA5 and  α t α . BBA5 is a 23 - residue peptide with a   
 β  β  α  architecture  [49] , whereas  α t α  is a 38 - residue peptide designed to adopt a 
helical  hairpin  conformation in aqueous solution  [50] . During simulations of the 
two systems at 280   K starting from their respective native conformation, the C   α    
RMSD relative to the native state rapidly increased above 4    Å . Detailed analysis 
of the structural deviation showed that, while the distinct secondary structure 
elements were mostly preserved (the   β  - hairpin  and the helix in BBA5, and helix 
1 and helix 2 in  α t α ), most of the deviation arises from the loss of their respective 
native tertiary structures (the packing of the hairpin and helix in BBA5, and 
the packing of helix 1 and helix 2 in  α t α ). Another source of deviation was an 
increased content of  π  - helicity. It is likely that the largest error in implicit solvent 
models originates from the treatment of the charged groups. The use of a distance -
 dependent dielectric function and the EEF1 modifi cations of the CHARMM 
param19 force fi eld, where ionic side chains are neutralized, lead to a rather 
crude approximation of the electrostatic contribution. This can be a major source 
of error for BBA5 and  α t α , since both have a high charge density (7 and 15, 
respectively). On the other hand, it was experimentally observed that, at pH   10.5, 
 α t α , which has four lysine residues, is largely disordered even at a temperature of 
5    ° C  [51] . Finally, BBA5 was not stable in a 300   K MD simulation with explicit water 
and the AMBER force fi eld with an 8    Å  cutoff, whereas it was stable with a 10    Å  
cutoff  [52] .   
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  9.3 

 The  FACTS  Implicit Solvent Model: A Fast Generalized  B orn Approach 

 The limitations of the SASA model motivated the development of the FACTS 
implicit model  [19] . FACTS implements a more rigorous treatment of electrostatic 
solvation, which does not require the neutralization of ionic groups, and also 
takes into account the degree of solvent exposure for the calculation of screening 
effect. 

 Despite the signifi cant variability of the dielectric constant in the interior of a 
protein molecule  [53, 54] , several implicit solvent models are based on the assump-
tion that the protein is a uniform, low - dielectric region. The essential approxima-
tion in such continuum electrostatics models is to represent the solvent as a 
featureless high - dielectric medium, and the macromolecule as a region with a 
low - dielectric constant and a spatial charge distribution  [1 – 4, 55 – 62] . In this way, 
the solvent degrees of freedom and interaction centers are not taken into account 
explicitly. The Poisson equation would provide an exact description of such a 
solute – solvent system, and its numerical solution, obtained either by a fi nite - dif-
ference algorithm  [12, 63 – 65]  or by a boundary - element algorithm  [66 – 69] , is more 
effi cient than the explicit treatment of the solvent, but still not fast enough for 
effective utilization in computer simulations of macromolecules. Based on the 
Born model for ionic solvation  [70] , the generalized Born (GB) model extends this 
formalism to treat solutes containing multiple charged particles and an arbitrarily 
shaped molecular surface. The GB formalism has become an effi cient method for 
the evaluation of continuum electrostatic energies  [14]  and approximates the PB 
 electrostatic solvation energy  as an effi cient pairwise summation that allows ana-
lytical force calculations:
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q q

r R R r R R

i j

ij i j ij i ji j

N
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, exp
= −
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(9.6)

  

where  r ij   is the distance between charges  q i   and  q j  ,  r ii     =   0, the constant   κ   is usually 
set to 4 or 8,   τ     =   1/  ε   m     –    1/ ε  s , and  N  is the number of atoms in the solute. The 
volume occupied by the solute is assigned a low dielectric constant   ε   m  (typically 1, 
2, or 4) and the charge distribution is defi ned by the partial charges of the solute 
atoms. The solvent is replaced by a uniform medium with a high dielectric con-
stant  ε  s  (typically 78.5 or 80 in the case of water). 

 The  effective Born radius ,  R i  , is a key quantity in the GB formalism. It measures 
the degree of burial of individual solute charges and corresponds to the distance 
between a particular atom and its hypothetical spherical dielectric boundary, 
chosen such that the self (or atomic)  electrostatic solvation energy,   ∆Gi

el, satisfi es 
the Born equation  [70] :

   
∆G

q

R
i

i

i

el = −
τ 2

2     
(9.7)

   

 In principle, the  “ exact ”  effective Born radii can be calculated from Equation  9.7  
using the self electrostatic solvation energy obtained through the PB theory, but 
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this would bring no computational advantage. One key observation was that 
Equation  9.6  yields very accurate results if   ∆Gi

el (or equivalently  R i  ) is a good 
approximation of the value obtained by solving the PB equation  [71] . 

 The fi rst generation of GB models used the  Coulomb fi eld approximation  for 
the evaluation of   ∆Gi

el, where the electric displacement  D   i   for each atom  i  is 
calculated by supposing that the hypothetical dielectric boundary is spherical 
and that atom  i  lies at the center of this sphere. A large variety of procedures for 
calculating effective Born radii within the Coulomb fi eld approximation have 
been presented. These include numerical surface or volume integrations  [14, 
72 – 75] , analytical integral expressions  [15] , and pairwise summation approxima-
tions  [76 – 78] . After recognizing that the Coulomb fi eld approximation was a major 
source of deviation from PB values  [3, 79] , corrections to the Coulomb fi eld 
approximation have been suggested and shown to greatly increase the accuracy of 
the effective Born radii  [16, 74, 75, 80] . Current accurate GB implementations are 
between 10 and 20 times slower than simulations  in vacuo   [81] . Moreover, for 
proteins of about 100 residues, the computational cost per MD time step is about 
the same for accurate GB models and explicit water simulations with periodic 
boundary conditions  [75] . 

 In FACTS, the self electrostatic solvation energy and SASA of individual atoms 
are calculated using intuitive geometric properties of the solute whose evaluation 
requires only solute interatomic vectors. For each solute atom, the volume and 
spatial symmetry of its neighboring atoms (or, equivalently, of the solvent dis-
placed by the neighboring atoms) are approximated (Figure  9.3 ). A combination 
of these two measures is used as variable of a sigmoidal function (see below). The 
parameters of the sigmoidal function, together with those of the linear combina-
tion with cross - term, are derived by fi tting to atomic electrostatic solvation energy 
values calculated by numerical solution of the PB equation. The GB formula (Equa-
tion  9.6 ) is used to obtain the electrostatic solvation free energy of the macromol-
ecule. The FACTS model does not assume the Coulomb fi eld approximation and 
does not require the defi nition of a dielectric discontinuity surface (such dielectric 
boundary is only required to calculate the PB reference data to which the param-
eters of the FACTS model are fi tted). The same two measures of solvent displace-
ment are combined and used in another sigmoidal function to estimate the SASA 
of individual atoms. The parameters of the sigmoidal function are derived by 
fi tting to SASA values calculated by an exact analytical method  [82] . Finally, the 
non - polar contribution to the solvation free energy is assumed to be proportional 
to the sum of the atomic SASA values  [7, 8] .   

 Both electrostatic solvation energy and SASA are determined using the same 
geometrical properties and analytical framework, which makes FACTS a compre-
hensive and effi cient implicit solvation model. When compared with one of the 
most accurate GB methods  [81] , like   “ generalized Born using molecular volume ”   
( GBMV )  [75] , it is shown that solvation energies computed by FACTS are of similar 
accuracy to the best available GB implementations, and MD simulations with 
FACTS are only four times slower than using the  in vacuo  energy. 
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 Figure 9.3     Schematic illustration of the 
measure of degree of burial in FACTS. The 
solvent exposure of an atom depends on the 
location of neighboring atoms. The large 
circle represents the sphere of radius   Ri

sphere 
used in FACTS to quantify the atomic 
solvation energy. FACTS computes the 
volumes occupied by the neighboring atoms 
inside the sphere and the symmetry of their 
spatial distribution. For example, for atom A 

(which may be part of a protruding side 
chain), the volume occupied by neighboring 
atoms is small and the symmetry is low, so 
that its atomic solvation energy   ∆GA

el  is large. 
The surface atom B has an intermediate 
measure of volume and a low symmetry 
value, which result in an intermediate 

  
∆GB

el . 
Atom C is completely buried, its volume and 
symmetry values are maximal, and   ∆GC

el 
vanishes to zero. 

  9.3.1 
 Description of the Model 

  9.3.1.1   Atomic (or Self) Electrostatic Solvation Energy 

 The essential idea in FACTS is that the electrostatic solvation free energy of atom 
 i ,   ∆Gi

el , is evaluated by considering a sphere of radius   Ri
sphere  around atom  i   [19] . 

The radius is large enough so that the atom distribution outside the sphere has 
only a negligible effect on   ∆Gi

el . If only atom  i  of the macromolecule were present 
within the sphere of radius   Ri

sphere , solving the Poisson equation would result in 
  ∆G q ri i i

el VDW≅ −τ 2 2 . As more and more atoms are gradually added (as for atoms A 
and B in Figure  9.3 ),   ∆Gi

el  becomes less favorable depending in a complex way on 
the spatial distribution of the additional atoms. When all the solvent has fi nally 
been fl ushed out from within the sphere (as for atom C in Figure  9.3 ), solving the 
Poisson equation would result in   ∆Gi

el ≅ 0. 
 The solvent exposure of a given atom  i  in a macromolecule depends obviously 

on the volume occupied by neighboring atoms, a second factor being the distance 
between the atom  i  and a neighboring atom  j ; atom  i  will be more desolvated by 
a close atom  j  than by a distant one. Then, for a given number of neighboring 
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atoms inside the sphere of radius   Ri
sphere with fi xed distances from atom  i , numer-

ous different atomic distributions can be obtained by rotations of the individual 
neighboring atoms (especially in three dimensions), and each of these confi gura-
tions may result in a different electrostatic solvation free energy of atom  i . To 
account for this effect, FACTS introduces a measure of symmetry. In Figure  9.3  
atom B lies at the surface of a protein, directly contacting the dielectric discontinu-
ity surface, and is therefore well exposed to solvent. In this atomic confi guration, 
most neighboring atoms are packed in one side of the sphere   Ri

sphere and the atomic 
distribution is thus highly asymmetric. One can imagine different confi gurations 
with more symmetric atom distributions, where atom  i  is no longer in direct 
contact with the solvent and is thus more shielded from it, resulting in a less 
favorable solvation free energy   ∆Gi

el . It should be noted that the boundary between 
the macromolecular and solvent environments in the PB evaluation is defi ned by 
the molecular surface  [83]  and, contrary to the van der Waals surface, it avoids the 
presence of solvent inside interstitial volumes and microcavities. 

 To cast the above ideas into mathematical form, the abbreviations  x   ij     =    x   i      –     x   j  , 
 r ij     =   | x   ij  |, and   ̂x xij ij ijr=  are introduced. The measure of  volume  occupied by the 
solute around atom  i  is defi ned by

   

A Vi j ij
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=
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and the measure of  symmetry  by
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 The measure of volume  A i   is simply the sum of the van der Waals volumes  V j   of 
the atoms surrounding atom  i  within the sphere, weighted by   Θ  ij  . Typically  A i   
ranges between 100   and 2000    Å  3  in a sphere of radius   Ri

sphere ≅ 10 Å. 
 The measure of symmetry  B i   is a weighted Euclidean norm of the sum of the 

unit vectors pointing from the central atom  i  to the neighboring atoms. Thereby 
each unit vector is weighted by   Θ  ij  , and additionally by the volume of the neighbor-
ing atom  V j   to which it points, divided by its distance  r ij   from atom  i . There is no 
other reason for the additional weighting factor  V j  / r ij   except for the fact that it was 
found to improve the correlation between the values of  B i   and atomic solvation 
energies calculated by PB. The value of  B i   is normalized to range between 0 and 
1. For a fully symmetric distribution,  B i   equals 0; whereas for a totally asymmetric 
distribution (for example, only one neighboring atom),  B i   is close to 1. The additive 
constant of 1 in the denominator of Equation  9.9  prevents the denominator becom-
ing zero for a completely isolated ion. 
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 The purpose of the function   Θ  ij   is two - fold: weighting and smoothing. The function 
  Θ  ij   is equal to 1 for  r ij     =   0 and drops continuously until   Θ  ij   equals 0 at   r Rij i= sphere . 
Thus, on the one hand,   Θ  ij   accounts for the fact that, the further an atom is placed 
from atom  i , the less it infl uences its solvation energy. On the other hand,   Θ  ij   
ensures the existence of continuous (fi rst and second) derivatives. 

 When the PB - derived atomic solvation energies   ∆Gi
el PB,  for unit charges are 

plotted against  A i   and  B i  , a sigmoidal distribution of data is observed (Figure  9.4 ). 
Therefore, the measures of volume and symmetry are combined linearly and by 
a cross - term into a single measure of solvent displacement

   C A b B b A Bi i i i i= + +1 2     (9.11)  

and a sigmoidal shaped function of  C i   is used to calculate the electrostatic solvation 
energy   ∆Gi

el FACTS,  of atom  i  for a unit charge:

   
∆G a

a

e
i a C ai

el FACTS, = +
+ − −( )0

1

1 2 3
    

(9.12)
     

 The parameters  a  0  and  a  1  are determined using the limiting cases of a fully buried 
and fully exposed atom. In the case of a fully buried atom (that is,  C i      →    + ∞ ), the 
value of   ∆Gi

el  should vanish, which implies that  a  0    =    −  a  1  and  a  2     >    0. For a fully 
exposed atom (that is,  C i      →    0), the Born formula applies, so that 
  a ri

a a
0 2 1 2 3= − ( ) +( )−τ VDW e  for a unit charge. Hence, for each van der Waals radius, 

the fi ve parameters  b  1 ,  b  2 ,  a  2 ,  a  3 , and  R  sphere  have to be determined by an optimiza-
tion procedure. The sigmoidal function (Equation  9.12 ) gives an accurate fi t to 
  ∆Gi

el PB,  (Figure  9.4 ). Intuitively,  C i   measures the solvent displacement around atom 
 i , and the solvation energy of atom  i  is a sigmoidal function of this measure.  

  9.3.1.2   Total Electrostatic Solvation Energy 

 The total electrostatic solvation energy in the FACTS model is the sum of the 
atomic self - energies and the GB interaction term:
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 Here   ∆Gi
el FACTS,  is calculated according to Equation  9.12 , and 

  R q Gi i i
FACTS el FACTS= −τ 2 2∆ , , with  N  being the number of atoms in the macromole-

cule. Equivalently,
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 with  r ii     =   0. Note that the second sum in Equation  9.13  implies an infi nite cutoff, 
while a truncation scheme (shifting  [20] ) is used in the FACTS implementation. 
Also, a multiplicative factor of 332.0716 is used in front of   τ   to obtain energy values 
in kilocalories per mole (kcal   mol  − 1 ) with interatomic distances in  Å ngstr ö m ( Å ) 
and partial charges in electronic units ( e ).  
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 Figure 9.4     The green surface represents 
Equation  9.12 , that is, the FACTS atomic 
electrostatic solvation energy as a function of 
 A i   and  B i   for param22. The red data points are 
atomic solvation energy values calculated by 
PB using unit charges and   ε   m    =   1. The 
dependence on the symmetry is more 

pronounced for the polar hydrogen atoms (a) 
than for the aliphatic carbon atoms (f) 
because the latter are almost always buried, 
whereas the former have similar probabilities 
to be buried or exposed. Note that a fully 
symmetric distribution yields  B i     =   0. 
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  9.3.1.3   Atomic Solvent - Accessible Surface Area 

 Estimating the amount and symmetry of the solvent that is displaced around a 
given atom provides information on how much the atom is accessible to solvent. 
Therefore, the geometric concepts described above for approximating the atomic 
electrostatic solvation energy offer a straightforward way to approximate the SASA 
of atom  i ,  S i  , by taking into account the relative positions of the surrounding atoms. 
Analogously to Equations  9.11  and  9.12  one can defi ne

   D A d B d A Bi i i i i= + +1 2     (9.15)  

and

   
S c

c
i c D ci

FACTS

e
= +

+ − −( )0
1

1 2 3
    

(9.16)
   

 for the SASA of atom  i . The parameters  c  0  and  c  1  are determined using the limiting 
cases of a fully buried and fully exposed atom. In the case of a fully buried atom 
(that is,  D i      →    + ∞ ), the value of  S i   should vanish, which implies that  c  0    =    −  c  1  and 
 c  2     >    0. For a fully exposed atom (that is,  D i      →    0), the analytical formula applies, 
so that   c ri

c c
0

2
4 1 4 1 2 3= +( ) +( )−π VDW e.  using a probe sphere of 1.4    Å  radius. The 

parameters  d  1 ,  d  2 ,  c  2 , and  c  3  are derived by fi tting to exact values of the SASA  [82] .  

  9.3.1.4   Total Solvation Free Energy in the  FACTS  Model 

 The solvation free energy of a macromolecule is written as the sum of a polar and 
a non - polar term,

   
∆ ∆G G Si

i

N
FACTS el FACTS FACTS= +

=
∑, γ

1     
(9.17)

  

where   γ   denotes the empirical  surface tension  parameter. Values of   γ   between 
0.015 and 0.025   kcal   mol  − 1     Å   − 2  have been used to run MD simulations  [19] .   

  9.3.2 
 Parameterization of  FACTS  

 The parameterization was done separately for the polar hydrogen parameter set 
param19 and the all - atom parameter set param22. Briefl y, two training sets, of 81 
(param19) and 72 (param22) conformations, from 29 peptides and proteins con-
taining native, molten globule - like and extended conformations and spanning a 
wide spectrum of secondary structures and irregular shapes (cavities, open loops, 
and so on), were used for the parameterization. Atomic solvation energies   ∆Gi

el PB,  
were calculated by numerical solution of the PB equation with the PBEQ module 
 [84]  in CHARMM. Reference atomic SASA values (  Si

exact) were computed with an 
analysis module in CHARMM. For each van der Waals radius, two sets of param-
eters had to be optimized separately: the fi ve parameters  b  1 ,  b  2 ,  a  2 ,  a  3 , and  R  sphere  
for the atomic solvation energies, and the four parameters  d  1 ,  d  2 ,  c  2 , and  c  3  for the 
atomic SASA. An upper bound of 10    Å  was imposed for the optimization of  R  sphere . 
Furthermore,  R  sphere  was optimized only for electrostatic solvation energies. For 
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atomic SASA values the  R  sphere  parameters determined for the electrostatic solva-
tion were used to increase the effi ciency in MD simulations, as the same list of 
atom pairs can be used for the evaluation of electrostatic solvation energy and 
SASA. Optimal parameters were obtained by minimizing the deviations of 
  ∆Gi

el FACTS,  from   ∆Gi
el PB,  and of   Si

FACTS from   Si
exact . A particle swarm algorithm  [85]  

was used for parameter optimization.  

  9.3.3 
 Validation and Applications of  FACTS  

 The FACTS model was compared with GBMV  [81] , one of the most accurate GB 
methods available (we refer the reader to the original FACTS publication  [19]  for 
details). Quantities like atomic solvation energies, screened interaction energies 
and SASA values are slightly better approximated by GBMV, but the correlation 
between FACTS and reference values is still very high, while FACTS is about 10 
times faster than GBMV. The biggest deviations of FACTS from  “ exact ”  values 
occur with the param19 parameter set (a force fi eld with short cutoffs and less 
hydrogenatoms than param22), and especially in the evaluation of atomic SASA 
values, mainly because, as mentioned above, the sphere radii were not optimized 
 ad hoc  for the atomic SASA evaluation, but set equal to those of the electrostatic 
atomic solvation energy for computational effi ciency. 

  9.3.3.1   Potential of Mean Forces of Side - Chain Dimers 

 One important test of the quality of an implicit solvent model is the comparison 
of potentials of mean forces (PMFs) between pairs of ionic or polar side - chain 
analogs or backbone fragments computed in implicit solvent with PMFs obtained 
in explicit water. Six PMFs calculated in explicit water and the implicit models 
GBMV and FACTS, are shown in Figure  9.5 . A general trend is that, compared to 
TIP3P   (transferable intermolecular potential, three - point  [86] ) explicit water, 
GBMV underestimates the interaction energies whereas FACTS overestimates 
them. Close agreement of FACTS with the explicit water profi le is seen in the 
backbone – Arg and Ser – Asn systems, and a large deviation is observed in the 
Lys – Glu system. In most cases FACTS does not reproduce the desolvation barrier, 
while GBMV tends to overestimate it. It has been observed that the reproduction 
of the desolvation barrier, which only infl uences the kinetics, is less important 
than the correct estimation of the minimum of the interaction energy, which 
infl uences the overall thermodynamics of a system  [29] .    

  9.3.3.2   Atomic Fluctuations 

 MD simulations  in vacuo  suffer from too small atomic fl uctuations. The RMSD 
fl uctuations of the C   α    atoms of ubiquitin (Protein Data Bank (PDB) ID: 1UBQ) 
and chymotrypsin inhibitor 2 (PDB: 2CI2) computed from param19 300   K MD 
simulations with either EEF1, SASA or FACTS as implicit solvent model are 
shown in Figure  9.6 . In the case of ubiquitin (Figure  9.6 a), the fl uctuations in 
FACTS and SASA trajectories are slightly higher than in the EEF1 trajectory, and 
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 Figure 9.5     Free - energy profi les of six dimers 
in TIP3P water (blue), GBMV implicit solvent 
(green), and FACTS param22 with   ε   m    =   1 
(magenta). The dimer confi gurations are 
shown in the inserts. The reaction coordinates 
plotted along the  x  - axis are (a)  r (Lys HZ1 – Glu 
OE1), (b)  r (Ala O – Arg HH22), (c)  r (Gln 

CD – Gln CD), (d)  r (Ser OG – Gln NE2), 
(e)  r (Ala HN – Ala O), and (f)  r (Ile - Ile 
CA – Ile - Ile CA). The molecules were 
constrained so that their only degree of 
freedom was translation along the dashed 
line. 
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slightly overestimate the crystallographic  B  - factors  [87] . A small increase of the 
fl uctuation may be expected for proteins in solution due to the lack of crystal 
packing. More importantly, FACTS and SASA reproduce the peaks (that is, the 
regions of highest mobility) as can be seen in the case of 2CI2 (Figure  9.6 b), where 
the N - terminal segment and the loop (residues 38 – 44) are the most fl exible regions 
according to both MD simulations and X - ray data.    

  9.3.3.3   Peptide Aggregation 

 Following the work of Cecchini  et al.  on the  β  - aggregation propensity  profi le of 
the Alzheimer ’ s amyloid -  β  peptide (A β  42 )  [43] , simulations were repeated with 
either TIP3P explicit water or FACTS as solvent model. As shown in Figure  9.2 , 
the profi le calculated in explicit water is better reproduced by FACTS. The high 
charge density in the N - terminal region of A β  42  is responsible for the strong devia-
tion between the  β  - aggregation propensities calculated by the SASA and explicit 
water simulations.  

  9.3.3.4   Scalar and Parallel Performance 

 The main advantage of FACTS is its speed; it is only four times slower than  in 

vacuo  and about 10 times faster than GBMV. The CPU time scales linearly with 
system size, as shown in Figure  9.7 a. Furthermore, FACTS has been parallelized 
and scales well on up to eight CPUs. A scaling factor of 5.6 is obtained in simula-
tions of the 389 - residue protein  β  - secretase (PDB: 1SGZ) on eight Xeon 2.33   GHz 
cores (70% of ideal scaling; Figure  9.7 b). Remarkably, simulations of a much 
smaller system, a 56 - residue designed protein (PDB: 2JWS), scale almost as well 
as the large 1SGZ system (a scaling factor of 5.3 on eight cores).      

 Figure 9.6     RMS fl uctuations ( Å ) of the C  α   
atoms of (a) ubiquitin and (b) chymotrypsin 
inhibitor 2, extracted from 300   K simulations 
started from their respective native structures. 
Simulations were performed with param19 
and either with EEF1 (green), SASA 
(magenta), and FACTS with   ε   m    =   1 and a 
surface tension - like parameter 

  γ     =   0.025   kcal   mol  − 1     Å   − 2  (cyan). The plotted 
values are averages of fl uctuations of fi ve 
consecutive 2   ns trajectory segments. The 
bold line with circles represents the 
fl uctuations derived from the crystallographic 
 B  - factors  [87]  using the formula RMS 
fl uctuation   =   [3 B /(8 π  2 )] 0.5 . 
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  9.4 

 Conclusions 

 The SASA implicit solvent model combines a fast approximation of the surface 
area with two atomic solvation parameters, and uses a linear distance - dependent 
dielectric function and neutralized ionic side chains to approximate the electro-
static screening effects. It reasonably describes solvation effects for peptides and 
small proteins, where most of the charges are exposed to solvent. The typical 
problems that arise in  in vacuo  MD simulations, that is, large deviations from the 
native conformation and an excessive number of intra - solute hydrogen bonds, are 
reduced when including the mean solvation term. The low computational burden 
of SASA allowed the study of slow processes like aggregation of amyloidogenic 
peptides   [41 – 43, 46] , and reversible folding of structured peptides   [33 – 35, 52] , 
which in turn helped to develop network - based analysis methods of the conforma-
tional space  [31, 88, 89] . SASA shows its limitations in MD simulations of proteins 
or highly charged molecules, where the distance - dependent dielectric function and 
the neutralization of ionic side chains fails to correctly describe the electrostatics 
in aqueous solution  [18] . 

 Attempts to alleviate these limitations led to the development of FACTS  [19] , an 
implicit solvent model based on the generalized Born treatment of electrostatics. 
Notably, FACTS is very effi cient because it uses simple measures of solvent dis-
placement and requires only distances between solute atoms that are close in 
three - dimensional space and are therefore included in standard non - bonding lists. 
With FACTS the structural integrity of globular proteins in long MD simulations 
is preserved, and the atomic fl uctuations correlate well with values derived from 
crystallographic  B  - factors. FACTS can be further improved, as the deviations in 
the PMFs from explicit water curves demonstrate. A source of deviation may be 

 Figure 9.7     FACTS timing analysis. (a) 
System size scaling of CPU time required for 
100   ns MD simulations with FACTS. Circles 
and plus symbols correspond to simulations 
with param19 and param22, respectively. (b) 
Scaling factors as a function of number of 
cores used in parallel MD simulations of the 
389 - residue protein  β  - secretase (PDB: 1SGZ; 

solid line with circles) and of a 56 - residue 
designed protein (PDB: 2JWS; bold dashed 
line with squares). The thin dashed line 
represents an ideal scaling behavior. All 
simulations were performed on a dual 
motherboard with Xeon E5410 2.33   GHz 
quad - core processors. 
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in the use of van der Waals radii for the defi nition of the solute – solvent dielectric 
boundary in the derivation of PB atomic free energy. The van der Waals radii are 
not optimized to reproduce solvation energy, and a different set of radii may lead 
to improved agreement between explicit water free energies and PB values  [90] , 
which in turn will improve the overall dynamical behavior of biomolecular systems. 
A more realistic description of solvation effects can also be obtained with an 
improved treatment of the non - polar component beyond the linear approximation 
of the solvent - accessible surface area, as it is increasingly recognized that different 
hydrophobic solvation regimes exist, depending on the length scale of the molecu-
lar system  [91 – 93] .  
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