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How Does a Simplified-Sequence Protein Fold?

Enrico Guarnera, Riccardo Pellarin, and Amedeo Caflisch*
Department of Biochemistry, University of Zurich, Zurich, Switzerland

ABSTRACT To investigate a putatively primordial protein we have simplified the sequence of a 56-residue a/b fold (the immu-
noglobulin-binding domain of protein G) by replacing it with polyalanine, polythreonine, and diglycine segments at regions of the
sequence that in the folded structure are a-helical, b-strand, and turns, respectively. Remarkably, multiple folding and unfolding
events are observed in a 15-ms molecular dynamics simulation at 330 K. The most stable state (populated at ~20%) of the simpli-
fied-sequence variant of protein G has the same a/b topology as the wild-type but shows the characteristics of a molten globule,
i.e., loose contacts among side chains and lack of a specific hydrophobic core. The unfolded state is heterogeneous and includes
a variety of a/b topologies but also fully a-helical and fully b-sheet structures. Transitions within the denatured state are very fast,
and the molten-globule state is reached in <1 ms by a framework mechanism of folding with multiple pathways. The native struc-
ture of the wild-type is more rigid than the molten-globule conformation of the simplified-sequence variant. The difference in struc-
tural stability and the very fast folding of the simplified protein suggest that evolution has enriched the primordial alphabet of
amino acids mainly to optimize protein function by stabilization of a unique structure with specific tertiary interactions.
INTRODUCTION

Proteins fold by a complex transition from a very broad

ensemble of unfolded conformations to the well-defined native

state, which is the functional structure. The complexity origi-

nates from the many degrees of freedom and the delicate

balance of enthalpic and entropic contributions to the free

energy from the polypeptide chain and solvent molecules

(1–3). Thus, despite protein folding involves one single chain

(in aqueous solvent), it is described more appropriately as

a phase transition than as a simple chemical reaction (3,4).

Evolution has selected sequences for specific biological

functions, which, except for the natively unfolded proteins,

require a thermodynamically stable folded structure (5).

Although folding efficiency is not under direct evolutionary

pressure, fast folding (i.e., in the microsecond to second time-

scale) is necessary for many biological functions that have to

be fine-tuned in time, such as signal transduction and rapid

adaptation to changes in the environment. Concerning a stable

functional state, it has been suggested that a sufficiently high

diversity of interactions is required for folding to a unique state

with an energy much more favorable than decoy structures

(6,7). Diversity of interactions requires a heterogeneous

amino-acid alphabet. Theoretical analysis and computer simu-

lations have suggested that selection of sequences that yield

a native conformation with a pronounced energy minimum,

i.e., an energy gap with respect to other structures, solves the

problem of kinetic accessibility of the native conformation

(8–11). Furthermore, by a comprehensive computational anal-

ysis of the folding cooperativity in several widely used lattice

models, it was observed that the model based on a 20-letter

alphabet is the most cooperative, whereas two- and three-letter

models are much less cooperative (12).
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On the experimental side, random libraries of sequences

with only three types of amino acids (leucine, glutamine,

and arginine) have been expressed in Escherichia coli
(13–15). By means of circular dichroism measurements,

only 1% of the sequences were shown to fold. These results

led the authors to conclude that the key elements of protein

design are in the proper placement of hydrophobic residues

along the polypeptide chain to ensure the formation of a

well-packed hydrophobic core. In another experimental

study the sequence of the SH3 domain was simplified by

using only five types of amino acids (glycine, alanine, isoleu-

cine, lysine, and glutamate) (16). The study was conducted

using the phage-display technique to select for native func-

tion. Despite the dramatic change in sequence, the folding

rates of the simplified versions of the SH3 protein were

very close to the folding rate of the wild-type. Moreover,

nuclear magnetic resonance analysis provided evidence of

a well-packed core consistent with the thermodynamic

stability of the folded state.

Because of the timescales involved and systematic error of

the atomistic model, the simulation of reversible folding of

polypeptides by transferable potentials is still very far from

the routine. Here, we attack the complexity of the folding

process by designing and simulating a putatively primordial

protein, a variant of the immunoglobulin-binding domain of

protein G with a simplified sequence (termed protein ssG

hereafter). The simplified (i.e., low complexity) sequence

of protein ssG consists of only three types of residues,

glycine, alanine, and threonine, which are distributed to

preserve the secondary structure propensity of the wild-

type sequence. This study was inspired by the following

questions:

What is the folding mechanism of a protein with simpli-

fied sequence?
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TABLE 1 Sequences of proteins G and ssG

Sequences

Protein G MTYKLI LNGKTLKGETTTEAVDAAT AE KVFKQYANDNGVDGEWTYDDATKTFTVTE

Protein ssG T TTTTTTT TGGTT TTTTTTTGGAAAAAAAAAAAAAAAGGT T TT TTTTGGT TTTTTT

Secondary structure string - EE EEEEE ESS EE E EEEEE - S S HHHHHHHHHHHHHHH- - - - EE EEETTT - EEEEE-

The secondary structure string was determined using the x-ray structure (19). In the DSSP string, the letters E, H, S, T, and the hyphen symbol (-) correspond to

extended, a-helical, bend, hydrogen-bonded turn, and unstructured, respectively (47).
Is its folded state topologically equivalent to that of the

wild-type, and is it uniquely defined?

Is its denatured state heterogeneous, i.e., does it contain

native and/or nonnative secondary structure elements

and topologies?

Are there misfolded states that might promote aggrega-

tion?

The simulation results indicate that the protein ssG folds

rapidly and reversibly to the native topology of the wild-

type but has a fluidlike folded state devoid of specific hydro-

phobic contacts. Furthermore, the strong propensity for

regular secondary structure formation results in a framework

model of folding with parallel pathways. Notably, the hetero-

geneous unfolded state ensemble of protein ssG includes

kinetic traps with high b-sheet content, which are likely to

be aggregation-prone.

METHODS

Reduced amino-acid alphabet and simplified
sequence of protein G

A necessary condition for proteinlike sequences, namely sequences resulting

in an energy gap between folded state and decoys, is that the effective

number of amino-acid types meff is larger than the number of conformations

per residue g (6). Assuming that a single residue can be found in three states

of secondary structure—helix, b, and turn/loop—we hypothesized that the

condition meff > g might hold for native topologies mainly defined by

secondary contacts, adopting an extremely simplified alphabet of only three

amino acids. In other words, our Ansatz is that it is sufficient to choose three

amino acids specifically prone to form the aforementioned secondary struc-

ture to reproduce the starting fold. Thus, to enforce secondary structure

propensity and remove frustration, the sequence of protein G was simplified

into only alanines, threonines, and glycines at segments that in the folded

structure are a-helical (residues 23–37), b-strand (residues 1–9, 12–20,

40–47, and 50–56), and turns, respectively. Threonine was chosen not only

because it is a moderately b-prone residue but also to counterbalance the

hydrophobicity of alanine and glycine. Moreover, threonine is the most abun-

dant residue in the wild-type sequence and it is present in 24% of b-strand

segments. Table 1 shows the sequences of wild-type protein G and the variant

protein ssG. The sequence identity is only 23%, and the 13 identical residues

are almost uniformly distributed along the 56-residue sequence except for

Thr16-Thr17-Thr18 in the second strand of the N-terminal b-hairpin.

Molecular dynamics simulations
and coarse-graining

The implicit solvent model and the protocols used for the molecular

dynamics simulations (17), as well as the method utilized for coarse-graining

of the conformational space, are presented in the Supporting Material.
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Markov chain approach, causal grouping,
and mean first-passage times (MFPT)

From the time series of Ca-RMSD clusters, a one-step transition matrix T(t)

of conditional probabilities can be estimated by using the relation

TijðtÞ ¼ Peq
ij ðtÞ=Peq

i x nijðtÞ=ni; (1)

where the indexes i, j are state labels, Peq
i ¼ ni/M is the equilibrium proba-

bility of the state i (ni snapshots over a total number of M), and Peq
ij (t) ¼

nij(t)/(M – 1) is the probability flux for the transition i / j at the lag time

t, where nij(t) is the total number of transitions i / j. All the quantities

are estimated within the lag time t of 20 ps, which is the saving time of

the trajectories. To test the Markov property of the time series at the lag

time t, a non-Markovian flux was estimated by comparing the one-step tran-

sition matrix Tjk(t) with the two-step transition matrix Tijk(t) for the transi-

tion i / j / k. The two-step transition matrix is

TijkðtÞ ¼ Peq
ijkðtÞ=Peq

ij x nijkðtÞ=nijðtÞ; (2)

where Peq
ijk(t) and nijk(t) are, respectively, the probability flux and the total

number of transitions i / j / k. The Markov property is valid if the iden-

tity Tijk(t) ¼ Tjk(t) is satisfied for any i. Using the relation in Eq. 2 and

summing up over all the two-step transitions, one obtains the total non-

Markovian flux

FðtÞ ¼ 1�
X

i/j/k

Peq
i TijðtÞTjkðtÞ: (3)

The non-Markovian flux is a probability flux, which reflects the overall error

made by assuming the Markov approximation on a time series at a certain

lag time t. The statistical significance of the clusters plays an important

role if one is interested to describe a time series adopting a Markov approx-

imation.

A procedure based on the reassignment of the clusters memberships is em-

ployed here to achieve the ‘‘Markovianity’’ of the time series: the snapshots

of the low-populated clusters are reassigned to the statistically significant

clusters according to their causal connectivity along the time series. In other

words, the procedure lumps together conformers that are close in time but

not necessarily in space. Such lumping is attained by reprocessing the

time series of clusters to obtain a time series of causally grouped mesostates:

when a snapshot of an insignificant cluster (size < cutoff) is encountered, it

is causally reassigned to the next significant cluster (size R cutoff). The

cutoff is chosen such that the resulting time series are Markovian, or more

precisely, have a non-Markovian flux <1%. For the present simulation of

protein ssG, 200 causally grouped mesostates resulted from a cluster size

cutoff of 250 snapshots (see Fig. S2 in the Supporting Material). The

simplicity of the procedure is rooted in the hypothesis that the dynamics

of the polypeptide takes place only between stable states where the system

can partially diffuse, losing memory of previously explored states. Remark-

ably, at the lag time of 20 ps, the overall error of the Markov approximation

is <1% for the 200 causally grouped mesostates, whereas it is 7.5% if one

considers, for the transition matrix, the 3124 clusters with two or more snap-

shots (see Fig. S2). The difference justifies the adoption of the causally

grouped mesostates for the Markov approximation. Thus, once a time series
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FIGURE 1 Rapid and reversible folding of protein ssG.

Folding events along the time series are emphasized by

pink vertical stripes. (A) Time series of the Ca RMSD

from the x-ray structure (PDB code 1pgb). The two

N-terminal and two C-terminal residues were excluded

from the RMSD calculation. (B) Time series of the fraction

of native contacts in the backbone. The native contacts

were defined using the x-ray structure and considering the

heavy atoms in the backbone for residues that are R3

distant along the sequence. A contact exists when the

distance is smaller than 7 Å, which yields 422 native

contacts in the x-ray structure. (C) Time series of the radius

of gyration with the blue line corresponding to the native

radius of gyration of protein G (Rgyr ¼ 10.2 Å). The

mean first-passage time to reach the folded mesostates,

calculated on the time series, is 163 5 157 ns (see Fig. S4).
of causally grouped mesostates is provided, the transition matrix Tij(t) can

be estimated, where now the indexes i, j run from 1 to 200.

To provide evidence that the validity of the Markov approximation at lag

time t¼ 20 ps is good enough for longer timescale extrapolations, transition

matrices for lag times up to 20 ns were determined from the causal grouped

time-series. The relaxation times corresponding to the eigenvalues show

robustness in the values of the slower relaxation times (see Fig. S3) within

these time ranges. Moreover, the distributions of the first passage times to

the folded states calculated from molecular dynamics and using the Markov

approximation compare very well in both their shape and timescales (see

Fig. S4), indicating a substantial equivalence in the kinetics of the original

and the modeled processes. These two results suggest that the Markov

approximation adopted for the causal grouped mesostates at 20 ps of lag

time is robust enough to infer the long time kinetics of the folding process.

The equilibrium counterpart of the transition matrix T(t) is the matrix of

mean first-passage times (MFPT) M whose entries Mij give the mean hitting

time for the transitions between the mesostates i / j, averaged over all the

possible connecting pathways. By assuming the ergodicity of the underlying

finite Markov chain, the Mij matrix is given by a system of linear equations

such as

Mij ¼ t þ
P
ksj

TikðtÞMkj

Mii ¼
P

k

TikðtÞðMki þ tÞ ; (4)

that are exactly solvable when the number of states is small. Assigning the

index 1 to the folded mesostate, then the first column of the MFPT matrix

(Mi1) gives the mean folding times from individual mesostates to the folded

one. To facilitate the reading of the M matrix, the indexes were sorted in

such a way that the low numbers (from 1) are the mesostates with small

folding times, whereas large numbers (up to 200) have longer folding times.

Thus, the first row of the M matrix satisfies the inequalities M1 1 % M2 1 %
$$$ % M200 1. The indexes of the sorted MFPT matrix are adopted for the

labeling of the mesostates throughout this work.

Static and dynamic correlations of secondary
structure

The time series of strings of secondary structure (termed SSS[8], see Sup-

porting Material) allows the adoption of information theory methods to

investigate the underlying structural mechanisms of folding. For each

residue, a probability pi(s) can be defined where i is the residue number

and s is one of the eight secondary structure symbols. Similarly, a pairwise
probability pij(ss0) is defined between two residues i and j, and secondary

structure s and s0. Both probabilities are estimated from the time series of

SSS[8]. The static correlation between pairs of residues can be evaluated

from the ensemble of visited strings by calculating the pairwise mutual infor-

mation. In information theory, the mutual information between two random

variables measures their mutual dependence (18). With the probabilities

previously defined the mutual information between two residues is defined as

Iij ¼
1

ln8

X

ss
0

pij

�
ss
0�

ln
pij

�
ss
0�

piðsÞpjðs0 Þ
; (5)

which is a normalized quantity that is zero when the residues i and j are

totally uncorrelated, and one when they are totally correlated.

The static mutual information can be generalized to obtain a correlation

function with the aim to evaluate the dynamics of formation of secondary

structure. We define a time-dependent pairwise probability pij(ss0, t) that

two residues i, j assume secondary structure ss0 at the time t. The time-depen-

dent mutual information is defined as

IijðtÞ ¼
1

ln8

X

ss
0

pij

�
ss
0
; t
�
ln

pij

�
ss
0
; t
�

piðsÞpjðs0 Þ
; (6)

from which the pairwise normalized correlation function between two

residues reads

CijðtÞ ¼
IijðtÞ � IijðNÞ
Iijð0Þ � IijðNÞ

; (7)

where Iij(N) and Iij(0) are the equilibrium and the static values of the mutual

information, respectively.

RESULTS AND DISCUSSION

All analyses are based on a 15-ms molecular dynamics simu-

lation of protein ssG at 330 K started from a fully extended

conformation with the backbone dihedral angles equal to

180�. First the 750,000 snapshots (saved every 20 ps) were

clustered by Ca RMSD (see the Supporting Material). From

the resulting 132,006 clusters, the causal grouping procedure

generated 200 mesostates (see Methods). The most popu-

lated mesostate contains 3.5% of the snapshots (Table 2)

and corresponds to the native topology of protein G.
Biophysical Journal 97(6) 1737–1746
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TABLE 2 Properties of the 50 most populated causally

grouped mesostates sorted according to statistical

weight Pi

Rank*

Pi

[%]

DGi

[kcal/mol]

DEi

[kcal/mol]

�TDSi

[kcal/mol]

Mi1

[ns]

a-Helix

[%]

b-Sheet

[%]

1 3.5 �1.0 �12.4 11.4 1 25 44

49 2.7 �0.9 �4.8 3.9 11 24 41

127 2.5 �0.8 �2.5 1.7 90 64 4

147 2.1 �0.7 3.0 �3.7 95 57 5

133 1.8 �0.6 3.7 �4.3 92 51 9

128 1.8 �0.6 3.9 �4.5 90 53 8

35 1.6 �0.5 �8.8 8.3 9 26 44

186 1.6 �0.5 0.9 �1.4 101 64 3

183 1.6 �0.5 2.9 �3.4 98 53 10

16 1.6 �0.5 �4.8 4.3 4 29 38

119 1.6 �0.5 �7.9 7.4 87 55 13

182 1.5 �0.5 1.6 �2.1 98 67 3

134 1.4 �0.4 4.3 �4.7 92 52 8

153 1.3 �0.4 �0.2 �0.2 96 63 4

125 1.3 �0.4 1.6 �2.0 89 53 10

164 1.2 �0.3 �6.2 5.9 96 42 29

139 1.1 �0.3 6.6 �6.9 94 38 16

123 1.1 �0.3 1.9 �2.2 89 53 10

24 1.0 �0.2 2.2 �2.4 6 35 27

179 1.0 �0.2 0.5 �0.7 97 43 21

174 1.0 �0.2 6.1 �6.3 97 40 15

171 1.0 �0.2 7.3 �7.5 96 39 19

152 1.0 �0.2 6.7 �6.9 96 43 13

138 1.0 �0.2 6.0 �6.2 94 32 24

105 1.0 �0.2 3.3 �3.5 83 47 14

48 0.9 �0.1 �5.9 5.8 11 22 44

4 0.9 �0.1 �10.4 10.3 2 25 37

200 0.9 �0.2 �1.4 1.2 314 0 74

198 0.9 �0.1 �2.7 2.6 201 2 60

172 0.9 �0.1 7.7 �7.8 97 31 22

132 0.9 �0.1 1.2 �1.3 92 31 31

129 0.9 �0.1 2.0 �2.1 90 46 15

121 0.9 �0.1 0.0 �0.1 88 32 32

116 0.9 �0.1 2.9 �3.0 87 51 9

10 0.9 �0.1 �5.9 5.8 3 28 39

91 0.8 �0.1 4.8 �4.9 73 12 45

87 0.8 �0.0 1.8 �1.8 68 31 30

75 0.8 �0.1 8.4 �8.5 38 34 20

21 0.8 �0.1 1.9 �2.0 5 28 31

184 0.8 �0.0 0.6 �0.6 99 41 23

161 0.8 �0.1 �1.0 0.9 96 27 37

76 0.7 �0.0 4.7 �4.7 43 32 21

47 0.7 0.0 �0.5 0.5 11 25 38

29 0.7 0.0 �0.6 0.6 7 32 28

162 0.7 0.1 �6.5 6.6 96 43 26

151 0.7 0.0 3.7 �3.7 96 39 20

137 0.7 0.0 0.6 �0.6 93 26 34

124 0.7 0.1 �1.6 1.7 89 59 7

118 0.7 0.1 0.4 �0.3 87 47 16

113 0.7 0.0 7.9 �7.9 87 39 13

Average effective energy (sum of force field and SAS solvation energy) rela-

tive to the whole simulation DEi ¼ hEii – hEi, where the hEii and hEi values

are calculated over the snapshots in the causally grouped mesostate i and the

whole trajectory, respectively. Note that, in any force field, the absolute

value of the effective energy is arbitrary and only DE values relative to

a reference state are meaningful. The free energy differences are calculated

by the relation DGi ¼ �kBT
P

j PjlnðPi=PjÞ. Consequently, the entropy

contribution to the free energy difference, TDSi, is calculated using the rela-

tion �TDSi ¼ DGi – DEi.
Biophysical Journal 97(6) 1737–1746
Fast folding to a molten globule

Multiple folding and unfolding events are sampled along the

15-ms trajectory as illustrated by the time series of Ca root

mean-square deviation (RMSD) from the x-ray structure

(PDB code 1pgb) and the fraction of native contacts

(Fig. 1). Note that the term ‘‘folding’’ is used here in a relaxed

sense to indicate that the molten-globule state with native

topology has been reached. In fact, in simulation segments

where the conformation has the native topology, the Ca

RMSD oscillates between 2.5 Å and 5 Å from the x-ray struc-

ture, the radius of gyration varies between 9 Å and 11 Å,

and the fraction of native contacts between 0.6 and 0.9. These

range of values reflect a fluidlike behavior typical of a molten

globule. Such behavior emerges also from the structural over-

lap of the conformations in the most populated mesostate

(Fig. 2 A). More quantitatively, the average value of the pair-

wise Ca RMSD within this mesostate is 3.5 Å. Interestingly,

within the most populated mesostate the largest structural

variability is observed at loops L1, L3, and L4 (Fig. 2 A), in

agreement with the largest deviations between x-ray structure

(19) and nuclear magnetic resonance conformers (20,21).

As a basis of comparison, using the same temperature, three

1-ms simulations of the wild-type sequence started from a fully

extended structure got trapped into compact nonnative

conformations with a Ca RMSD from the x-ray structure

ranging from 7 to 14 Å. Note also that in control simulations

started from the folded state the wild-type protein is structur-

ally stable on a 1-ms timescale. Importantly, the native struc-

ture of the wild-type protein is more rigid than the folded

conformation of protein ssG, as shown by the root mean-

square fluctuations (RMSF) calculated using portions of the

trajectories where the system is in the folded state

(Fig. 2 C). The RMSF plots show significantly larger fluctua-

tions for the simplified-sequence variant than the wild-type

except for the loop L1. That the two proteins have qualita-

tively similar RMSF profiles along the sequence is a conse-

quence of the essentially identical topology of the folded state.

Heterogeneity of the unfolded state

The network representation of the 200 causal mesostates

(nodes) and their transition matrix (links) illustrates the

configuration space of protein ssG (Fig. 3). A semiquantita-

tive description of the free energy basins emerges from the

thickness of the links and size of the nodes, which reflect

the probabilities of internode transition and node population,

respectively. Moreover, the quality-threshold algorithm is

used to partition the network into basins, which are empha-

sized by different colors in Fig. 3. Note that the network of

causal mesostates is more informative than the original

conformational space network (22), which depicted the

*The rank reflects the folding time Mi1 calculated by the equilibrium evolu-

tions of the Markov chain. Structures in mesostates with rank in boldface are

shown in Figs. 3 and 4.
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FIGURE 2 Comparison of the molten-globule state extracted from the

simulations of protein ssG (A) and the x-ray structure of protein G (B).

The N-terminal b-hairpin, central a-helix, and C-terminal b-hairpin are in

green, red, and blue, respectively. The tubelike rendering in panel A was

generated using MOLMOL (48) and 100 snapshots from the most populated

mesostate. Note that the topology of protein ssG is the same as the one of

the wild-type protein but the lack of long side chains and specific contacts

in the former results in a flatter b-sheet and a slightly different orientation

of the a-helix with respect to the b-sheet. (C) Comparison of Ca root

mean-square fluctuations (RMSF). For both proteins, the RMSF values

are calculated at the same temperature (330 K) and by averaging over the

same number of 1-ns intervals extracted from trajectory segments during
dynamic connectivity but did not show quantitative infor-

mation on kinetics. The basin of the folded mesostate

includes also other mesostates with the secondary structure

of protein G, and has a population of 21.7% (red basin in

Fig. 3). Although its most populated mesostate has the

correct protein G topology, it contains other mesostates

with one hairpin flipped (mesostate 35 in Fig. 3). These mes-

ostates with slightly different topology interconvert very

rapidly within the most populated basin. The mesostates in

the folded basin are stabilized mainly by enthalpy (see red
basin in Fig. 3 and details in Table 2). In particular, the

most populated mesostate has an average effective energy

12.4 kcal/mol more favorable than the effective energy aver-

aged over the entire trajectory. The most populated basin is

in fast exchange with a basin (of statistical weight of

6.3%) that contains mesostates having both hairpins flipped

with respect to the native topology of protein G (mesostate

49 and green basin in Fig. 3; see also Table 2).

The unfolded state is heterogeneous and is made up of

mesostates with different relative amount of a-helical and

b-sheet content (see Table 2). The three-helix bundle meso-

states 133 and 147 (gray-shaded nodes in Fig. 3; see also

Table 2) connect two unfolded basins with a mixture of

a-helical and b-sheet content. One of these two basins has

statistical weight of 10.3% (blue in Fig. 3) and includes

conformations with a three-stranded b-sheet packed against

a long helix (mesostate 164), whereas the other has a weight

of 13.1% (purple in Fig. 3) and includes mesostates with two

long helices and a short b-hairpin (mesostate 119). Notably,

at the border of the network there are several mesostates with

a very high b-sheet content (e.g., mesostates 66, 198, and

200 with a b-sheet content of 55%, 60%, and 74%, respec-

tively). They can be considered off-pathway traps because

the main folding transitions connect the unfolded basins con-

sisting of conformations with mixed secondary structure

content to the folded basin (see next subsection).

Folding mechanisms: kinetic accessibility
of mesostates

The distribution of the first-passage times to reach the folded

mesostate, calculated on the time series of 200 causally

grouped mesostates, is a single exponential curve with a

mean folding time of 163 ns (see Fig. S4). This apparent

simplicity is in striking contrast with the complexity of the

transition-matrix network (Fig. 3). As explained in Methods,

the equilibrium extrapolation of the Markov chain is the

matrix of MFPT values, which gives the equilibrium transi-

tion time between pairs of states. The graphical rendering of

the MFPT matrix shows in a compact way the kinetic

distance between all pairs of causal mesostates (Fig. 4).

which the proteins are in the folded state (i.e., RMSD <5.0 Å from the

x-ray structure and the center of the most populated mesostate for the

wild-type and protein ssG, respectively).
Biophysical Journal 97(6) 1737–1746
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FIGURE 3 The network representation of the transition matrix. The tubelike rendering of representative conformations was generated as in Fig. 2 A. The

nodes are the 200 mesostates determined by causal grouping whereas the links are the transition probabilities Tij extracted from the trajectory. The size of the

nodes is proportional to their population, although the size of the links reflects the probability value in the transition matrix with a lag time of 20 ps. The position

of the nodes in the network was determined by the spring-embedder visualization algorithm of the program TULIP (49), which takes into account the values of

the transition matrix to optimize the node positioning in the plane. The color of the nodes is assigned according to basin’s membership, which is determined by

clustering the transition matrix of the 200 mesostates using the quality-threshold algorithm with a cutoff of Tij > 0.0001. Color assignment begins from the

node that has the largest number of neighbors with link value, i.e., transition probability, above the cutoff. With this procedure, 52 basins were identified and the

most populated includes the folded mesostate. Of these 52 basins, 28 and 9 consist of only one and two mesostates, respectively (gray nodes). Yet, the total

weight in one-mesostate and two-mesostate basins is only 18% and 9%, respectively. (a) The rank reflects the folding time Mi1 calculated by the equilibrium

extrapolation of the Markov chain, and is the same as in Table 2. (b) The color of the nodes specifies the basin’s membership.
The band structure of the MFPT matrix provides useful

information on the folding mechanism of the ssG protein.

The horizontal bands are due to the fact that the MFPT

matrix is a directed matrix, so that the mean time to go

from a mesostate i to j is different than for the inverse tran-

sition, because the corresponding pathways are different in

general. The bands give the overall kinetic accessibility of

individual mesostates. There are four rather distinct kinetic

regions of the conformation space. Mesostates 1–60 rapidly

exchange with the folded mesostate and can be accessed

from all other mesostates within 100–300 ns. Mesostates

61–104 are transient and most of them separate the folded

region from the unfolded basins. In the region 105–175 are

located most of the unfolded basins (a/b and only a-struc-
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tures), while the fourth region, mesostates 176–200, includes

the kinetic traps with high b-sheet content.

Folding mechanisms: secondary and tertiary
structure formation

The secondary structure formation is analyzed by means of

pairwise correlations whose calculation is based on the

mutual information between pairs of residues (see Methods).

Both static and dynamic correlations are calculated for all

residue pairs. The static correlation is evaluated by calcu-

lating the normalized mutual information between pairs of

residues on the ensemble of strings of secondary structure

observed in the simulation of ssG protein (Fig. 5). The
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FIGURE 4 Folding kinetics illustrated by the sorted MFPT matrix Mij of the 200 causally grouped mesostates. An element of the matrix is the MFPT for the

i / j transition at equilibrium. Note that the matrix is not symmetric because each entry is an MFPT value and not a flux. The flux is the reciprocal of the MFPT

value multiplied by the equilibrium probability, which yields a symmetric matrix (shown in Fig. S5). Horizontal rows are equilibrium transitions from all the

mesostates i (x axis) to a specific j (y axis). The indices (i,j) are ordered from 1 (fastest relaxation to the most populated mesostate, which belongs to the molten-

globule state with native topology) to 200 (slowest relaxation). The green-yellow band in the bottom indicates that the nativelike molten-globule state can be

reached rapidly from all other mesostates. The conformations with high b-sheet content are kinetically most distant from the most populated mesostate. The

mesostates with helical bundles and/or mixed a- and b-content interconvert rapidly.
modular pattern of the matrix suggests that the interactions

responsible for the secondary structure formation are mainly

taking place between the homopolymer segments of the

protein. The highest correlations are observed for the local

secondary structure, in particular the residues involved in the

a-helix and the two native b-hairpins (correlation T 20%).

Long-range correlations define all possible tertiary topolo-

gies corresponding to a four-stranded b-sheet packed on

a helix. These correlations are weaker than the local ones.

Their averaged values are ~4% for S1S4, ~3% for both

S1S3/S2S4, and ~1% for S2S3. Notice that the S1S4 corre-

lation corresponds to the b-strand arrangement as in the

correct protein G topology. The long-range correlations

S2-H and H-S3 are weaker than those mentioned above,

and give rise to a long helix involving residues Thr12-Ala37
or Ala23-Thr47, respectively. Overall, the static correlations

indicate that there is a propensity of protein ssG to assume

the very same secondary structure of protein G.

Dynamic correlations provide a mechanistic view of the

sequence of events in secondary structure formation. The

correlations are evaluated by calculating the mutual informa-

tion between pairs of residues as a function of time and then

averaging within the defined fragments (see Methods). The

times at which the dynamic correlation reaches a value of

0.5 for the a-helix and the C-terminal b-hairpin S3S4 are

similar (~5 ns), whereas those for the N-terminal b-hairpin

S1S2 and the parallel arrangement of S1S4 are ~10 ns and

15 ns, respectively (Fig. 6). All other combinations of

b-strands, which yield nonnative topologies, have slower

correlation times, suggesting a sequence of events for folding
Biophysical Journal 97(6) 1737–1746
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which is compatible with a diffusion-collision mechanism

(23,24). According to such a mechanism, and with the zipper

model of folding (25,26), individual elements of secondary

structure (the a-helix, S1S2, or S3S4) can form indepen-

dently from each other. Interactions among segments that

are distant along the sequence, (e.g., native S1S4, and nonna-

tive S1S3 or S2S4) promote the formation of a complex

tertiary structure by coalescence.

FIGURE 6 Dynamic correlation between secondary structure elements Cij

(Eq. 7). Native and nonnative elements of secondary structure are in black

and red, respectively. Different timescales for secondary structure formation

suggest a folding mechanism compatible with the framework model. The

curve H represents the autocorrelation within the poly-Ala a-helix, while

S1S2 (N-terminal b-hairpin), S3S4 (C-terminal b-hairpin), S1S4 (N/C-

terminal two-stranded parallel b-sheet), as well as the nonnative arrange-

ments S1S3, S2S4, and S2S3, reflect the association of poly-Thr b-strands.

FIGURE 5 Matrix of the static correlation of secondary structure Iij (Eq.

5). The modular pattern suggests that the interactions responsible for

secondary structure formation are present between the homopolymer

segments of the protein ssG. The cartoons are shown to illustrate the sec-

ondary structure elements having the highest correlations. Abbreviations:

H ¼ Ala23–Ala37 for the poly-Ala and S1 ¼ Thr1–Thr9, S2 ¼ Thr12–

Thr20, S3 ¼ Thr40–Thr47, and S4 ¼ Thr50–Thr56 for the poly-Thr.
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CONCLUSIONS

We have studied the folding mechanisms of a simplified

protein whose sequence consists of only three types of resi-

dues: glycine, alanine, and threonine. Molecular dynamics

simulations of the simplified-sequence variant of protein G

(termed ssG) provide strong evidence that a heteropolymer

with a limited assortment of monomer types is able to adopt

a complex topology. In fact, reversible folding to the wild-

type native topology has been achieved in this work by using

a force-field-based (i.e., transferable) potential. Note that

structured peptides (a-helices and b-sheets) fold to the

correct conformation with the very same force-field and

implicit solvent model as documented in previous simulation

studies (27–31). Moreover, the folding kinetics of helical

peptides, and in particular deviations from single-exponen-

tial, are reproduced correctly (31).

The Markov-chain analysis of the atomistic simulations of

protein ssG was used to investigate the unfolded state and

folding mechanism, which is not possible by conventional

experimental techniques. Three main results emerge from

this analysis.

First, rapid folding is observed for a simplified-sequence

variant of a protein with a/b topology. It should be empha-

sized that this topology is more heterogeneous than the all-

b topology of wild-type and simplified variants of protein

SH3 (16). The Markov-chain analysis indicates that the

lack of diversity of interactions results in a free-energy land-

scape devoid of frustration so that conformations with signif-

icantly different content of secondary structure interconvert

very rapidly. The correlation analysis for secondary structure

formation suggests that the molten-globule state is reached

through multiple pathways (32) and by a diffusion-collision

mechanism (framework) (23–26), which is due to the strong

secondary structure propensity of the helical segment and the

two b-hairpins. In fact, the initial folding events are the

independent formations of the local elements of secondary

structure. The assembly of regular elements of secondary

structure takes place by coalescence and is mainly driven

by backbone-backbone hydrogen bonding. The extremely

low heterogeneity of side-chain types allows the system to

explore a large variety of topologies that are compatible

with the secondary structure of protein G. Moreover, the

molten globular character of the folded state of protein ssG

and its fast folding time are likely to be a consequence of

the lack of correlation between contact energies and loop

closure entropies as energy landscape theory has suggested

(33). When such a correlation is strong, one observes coop-

erative folding. The effects of the absence of such a correla-

tion, which in protein ssG is a consequence of the lack of

energy heterogeneity due to the reduced amino-acid

alphabet, has been experimentally reported on protein S6

through circular sequence permutations (33,34). There, the

sequence permutation resulted in faster folding and less rigid

native structure, which is also observed here for protein ssG.
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Second, the folded state of the protein ssG is much more

flexible than that of the wild-type protein G. Therefore,

reduced alphabets of amino acids seem to be suitable to

define globular folds with abundant secondary structure

elements, but they do not encode for the specificity of tertiary

contacts required for a native, i.e., functional, structure.

However, low complexity alphabets of amino acids have

been shown by recent experimental works to be suitable

for molten globular active enzymes (35,36). Furthermore,

simplified sequences of a three-helix bundle fold (protein

GA88) and an a/b fold (protein GB88, which is the very

same domain of protein G used in our simulations) with

88% sequence identity were shown to possess different

structure and function (37). Therefore, the information deter-

mining the fold seems to be ‘‘highly concentrated in a few

amino acids’’ (37), i.e., only 7 of 56, and very recent results

by the same authors indicate only 3 of 56 (38). Our simula-

tion results, in particular the variety of topologies observed

for protein ssG (which include the folds of both protein

GA88 and GB88), provide the following explanation of the

experimental findings: It is likely that both folds are popu-

lated by both GA88 and GB88, but only one fold, the statis-

tically predominant one, is observed in the ensemble exper-

iments. Moreover, the relative statistical weight can be easily

shifted toward a particular fold by changing only a small

subset of the residues.

Third, despite the reduced diversity in the interactions, the

denatured state is heterogeneous, as it consists of structures

with a secondary structure content ranging from fully a-helical

to fully b-sheet. The latter are kinetic traps and might promote

aggregation. Interestingly, Langevin dynamics simulations

with a coarse-grained model of an amphipathic polypeptide

indicate that a minor increase (%1 kcal/mol) in relative

stability of a b-aggregation prone state can result in a dramatic

acceleration of fibril formation rates (39,40). On the experi-

mental side, protein G (more precisely the same domain of

protein G as in this study) was shown to form amyloid fibrils

under mild denaturation conditions (41). Furthermore, several

double mutants with reduced thermodynamic stability were

observed to aggregate with high reproducibility in the same

study. In other words, by controlling the stability of the

protein, through mutations or variation of the experimental

conditions, it was possible to modulate the ability to form

fibrils. Notably, the key requirement for fibril formation was

to choose conditions in which the population of intermediate

states present during the unfolding transition was maximized.

Furthermore, by comparing mutations at different strands of

protein G, the same authors have provided evidence that the

overall stability of protein G is the key determinant for

amyloid formation and not the specific location of destabiliz-

ing mutations (42).

On the basis of the experimental data on protein G amyloid-

fibril formation and our simulation results, we suggest that the

enrichment of a primordial (i.e., reduced) alphabet of residues

has been directed by evolution toward a double purpose: the
optimization of protein function (which in most cases requires

a stable folded structure) and at the same time the elimination

of nonnative conformations that are aggregation-prone by

means of frustration and competing interactions. Dramati-

cally reduced alphabets of amino acids seem to be suitable

to define elementary folds but they do not encode the

sufficient complexity such that both these optimization

prescriptions can be achieved by evolution. It is important

to underline that our simulation study, per se, does not shed

light on the effects of evolution, as only one simplified

sequence was investigated. Moreover, it is not (yet) possible

to simulate the reversible folding of the wild-type sequence of

protein G with an atomistic and transferable force field. To try

to emulate evolution, we plan to run implicit solvent (43)

simulations of the reversible folding of simplified-sequence

variants of protein G consisting of amino-acid alphabets of

increasing complexity, i.e., from low to an intermediate

number of side-chain types. Remarkably, in a recent experi-

mental study, a simplified sequence was shown to fold into

a molten-globule conformation (four-a-helical bundle), and

later mutated to an O2 transport protein with well-defined

native structure by gradually increasing the diversity of

amino-acid types from 3 (Glu, Lys, and Leu) to 14 (44).

We conclude by quoting from an article by F. Crick of

41 years ago (45):

‘‘It certainly seems unlikely that all the present amino acids

were easily available at the time the code started. Certainly

tryptophan and methionine look like later additions. Exactly

which amino acids were then common is not yet clear,

though most lists would include glycine, alanine, serine,

and aspartic acid.’’

The simplified three-letter alphabet used in this simulation

study included two of these four residues, plus threonine

(which is similar to serine). Furthermore, glycine and alanine

were first observed (together with aspartic acid) in the

remarkable experiment of Miller (46) on the amino-acid

synthesis under primitive conditions.
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