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32.1

Introduction

Proteins in solution fold in time scales ranging from microseconds to seconds.

A computational approach to folding that should work, in principle, is to use

an atom-based model for the potential energy (force field) and to solve the time-

discretized Newton equation of motion (molecular dynamics, MD [1]) from a dena-

tured conformer to the native state in the presence of the appropriate solvent. With

the available simulation protocols and computing power, such a trajectory would

require approximately 10–100 years for a 100-residue protein where the experi-

mental transition to the folded state takes place in about 1 ms. Hence, there is a

clear problem related to time scales and sampling (statistical error). On the other

hand, we think that current force fields, even in their most detailed and sophisti-

cated versions, i.e., explicit water and accurate treatment of long-range electrostatic

effects, are not accurate enough (systematic error) to be able to fold a protein on a

computer. In other words, even if one could use a computer 100 times faster than

the currently fastest processor to eliminate the time scale problem, most proteins

would not fold to the native structure because of the large systematic error and the

marginal stability of the folded state typically ranging from 5 to 15 kcal mol�1. In-

terestingly, only designed peptides of about 20 residues have been folded by MD

simulations (see Section 32.2.1) using mainly approximative models of the solvent

(see Section 32.3.4). Alternatively, protein unfolding which is a simpler process

than folding (e.g., the unfolding rate shows Arrhenius-like temperature depen-

dence whereas folding does not because of the importance of entropy, see Section

32.2.1.2) can be simulated on shorter time scales (1–100 ns) at high temperature or

by using a suitable perturbation.

MD simulations can provide the ultimate detail concerning individual atom mo-

tion as a function of time. Hence, future improvements in force fields and simula-

tion protocols will allow specific questions about the folding of proteins to be

addressed. The understanding at the atomic level of detail is important for a com-

plicated reaction like protein folding and cannot easily be obtained by experiments.

Yet, experimental approaches and results are essential in validating the force fields
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and simulation methods: comparison between simulation and experimental data is

conditio sine qua non to validate the simulation results and very helpful for improv-

ing force fields.

This chapter cannot be comprehensive. Results obtained by using atom-based

force fields and MD are presented whereas lattice models [2] as well as off-lattice

coarse-grained models (e.g., one interaction center per residue) [3] are not men-

tioned because of size limitations. It is important to note that the impact of MD

simulations of folding and unfolding is increasing thanks to faster computers,

more efficient sampling techniques, and more accurate force fields as witnessed

by several review articles [1, 4] and books [5–7].

32.2

Molecular Dynamics Simulations of Peptides and Proteins

32.2.1

Folding of Structured Peptides

Several comprehensive review articles on MD simulations of structured peptides

have appeared recently [8–10]. Here, we first focus on simulation results obtained

in our research group and then discuss the Trp-cage, a model system that has been

investigated by others.

32.2.1.1 Reversible Folding and Free Energy Surfaces

b-Sheets The reversible folding of two designed 20-residue sequences, beta3s

and DPG, having the same three-stranded antiparallel b-sheet topology was simu-

lated [11, 12] with an implicit model of the solvent based on the accessible surface

area [13]. The solution conformation of beta3s (TWIQNGSTKWYQNGSTKIYT)

has been studied by NMR [14]. Nuclear Overhauser enhancement spectroscopy

(NOE) and chemical shift data indicate that at 10 �C beta3s populates a single

structured form, the expected three-stranded antiparallel b-sheet conformation

with turns at Gly6-Ser7 and Gly14-Ser15, (Figure 32.1) in equilibrium with the de-

natured state. The b-sheet population is 13–31% based on NOE intensities and 30–

55% based on the chemical shift data [14]. Furthermore, beta3s was shown to be

monomeric in aqueous solution by equilibrium sedimentation and NMR dilution

experiments [14].
DPG is a designed amino acid sequence (Ace-VFITSDPGKTYTEVDPG-Orn-

KILQ-NH), where DP are d-prolines and Orn stands for ornithine. Circular dichro-

ism and chemical shift data have provided evidence that DPG adopts the expected

three-stranded antiparallel b-sheet conformation at 24 �C in aqueous solution [15].

Moreover, DPG was shown to be monomeric by equilibrium sedimentation. Al-

though the percentage of b-sheet population was not estimated, NOE distance re-

straints indicate that both hairpins are highly populated at 24 �C.

In the MD simulations at 300 K (started from conformations obtained by spon-
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taneous folding at 360 K) both peptides satisfy most of the NOE distance restraints

(3/26 and 4/44 upper distance violations for beta3s and DPG, respectively). At a

temperature value of 360 K which is above the melting temperature of the model

(330 K), a statistically significant sampling of the conformational space was ob-

tained by means of around 50 folding and unfolding events for each peptide [11,

12]. Average effective energy and free energy landscape are similar for both pepti-

des, despite the sequence dissimilarity. Since the average effective energy has a

downhill profile at the melting temperature and above it, the free energy barriers
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Fig. 32.1. Number of clusters as a function of

time. The ‘‘ leader’’ clustering procedure was

used with a total of 120 000 snapshots saved

every 0.1 ns (thick line and square symbols).

The clustering algorithm which uses the Ca

RMSD values between all pairs of structures

was used only for the first 8 ms (80 000

snapshots) because of the computational

requirements (thin line and circles). The

diamond in the bottom left corner shows the

average number of conformers sampled during

the folding time which is defined as the

average time interval between successive

unfolding and refolding events. The insets

show a backbone representation of the folded

state of beta3s with main chain hydrogen

bonds in dashed lines, and the average

effective energy as a function of the fraction of

native contacts Q which are defined in [11].

Figure from Ref. [33].
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are a consequence of the entropic loss involved in the formation of a b-hairpin

which represents two-thirds of the chain. The free energy surface of the b-sheet

peptides is completely different from the one of a helical peptide of 31 residues,

Y(MEARA)6 (see below). For the helical peptide, the folding free energy barrier cor-

responds to the helix nucleation step, and is much closer to the fully unfolded state

than for the b-sheet peptides. This indicates that the native topology determines to

a large extent the free energy surface and folding mechanism. On the other hand,

the DPG peptide has a statistically predominant folding pathway with a sequence

of events which is the inverse of the one of the most frequent pathway for the be-

ta3s peptide. Hence, the amino acid sequence and specific interactions between

different side chains determine the most probable folding route [12].

It is interesting to compare with experimental results on two-state proteins. De-

spite a sequence identity of only 15%, the 57-residue IgG-binding domains of pro-

tein G and protein L have the same native topology. Their folded state is symmetric

and consists mainly of two b-hairpins connected such that the resulting four-

stranded b-sheet is antiparallel apart from the two central strands which are paral-

lel [16]. The f value analysis (see Section 32.2.3 for a definition of f value) of pro-

tein L and protein G indicates that for proteins with symmetric native structure

more than one folding pathway may be consistent with the native state topology

and the selected route depends on the sequence [16]. Our MD simulation results

for the two antiparallel three-stranded b-sheet peptides (whose sequence identity

is also 15%) go beyond the experimental findings for protein G and L. The MD tra-

jectories demonstrate the existence of more than one folding pathway for each pep-

tide sequence [12]. Interestingly, Jane Clarke and collaborators [17] have recently

provided experimental evidence for two different unfolding pathways using the

anomalous kinetic behavior of the 27th immunoglobulin domain (b-sandwich) of

the human cardiac muscle protein titin. They have interpreted the upward curva-

ture in the denaturant-dependent unfolding kinetics as due to changes in the flux

between transition states on parallel pathways. In the conclusion of their article

[17] they leave open the question ‘‘whether what is unusual is not the existence

of parallel pathways, but the fact that they can be experimentally detected and

resolved.’’

a-Helices Richardson et al. [18] have analyzed the structure and stability of

the synthetic peptide Y(MEARA)6 by circular dichroism (CD) and differential

scanning calorimetry (DSC). This repetitive sequence was ‘‘extracted’’ from a 60-

amino-acid domain of the human CstF-64 polyadenylation factor which contains

12 nearly identical repeats of the consensus motif MEAR(A/G). The CD and DSC

data were insensitive to concentration indicating that Y(MEARA)6 is monomeric in

solution at concentrations up to 2 mM. The far-UV CD spectrum indicates that the

peptide has a helical content of about 65% at 1 �C. The DSC profiles were used to

determine an enthalpy difference for helix formation of 0.8 kcal mol�1 per amino

acid. The length of Y(MEARA)6 makes it difficult to study helix formation by MD

simulations with explicit water molecules. Therefore, multiple MD runs were per-

formed with the same implicit solvation model used for the b-sheet peptides [13].
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The simulation results indicate that the synthetic peptide Y(MEARA)6 assumes a

mainly a-helical structure with a nonnegligible content of p-helix [149]. This is

not inconsistent with the currently available experimental evidence [18]. A signifi-

cant p-helical content was found previously by explicit solvent molecular dynamics

simulations of the peptides (AAQAA)3 and (AAKAA)3 [19], which provides further

evidence that the p-helical content of Y(MEARA)6 is not an artifact of the approxi-

mations inherent to the solvation model.

An exponential decay of the unfolded population is common to both Y(MEARA)6
[149] and the 20-residue three-stranded antiparallel b-sheet [14] previously investi-

gated by MD at the same temperature (360 K) [11]. The free energy surfaces of

Y(MEARA)6 and the antiparallel b-sheet peptide differ mainly in the height and lo-

cation of the folding barrier, which in Y(MEARA)6 is much lower and closer to the

fully unfolded state. The main difference between the two types of secondary struc-

ture formation consists of the presence of multiple pathways in the a-helix and

only two predominant pathways in the three-stranded b-sheet. The helix can nucle-

ate everywhere, with a preference for the C-terminal third of the sequence in

Y(MEARA)6. Furthermore, two concomitant nucleation sites far apart in the se-

quence are possible. Folding of the three-stranded antiparallel b-sheet peptide

beta3s started with the formation of most of the side chain contacts and hydrogen

bonds between strands 2 and 3, followed by the 1–2 interstrand contacts. The in-

verse sequence of events, i.e., first formation of 1–2 and then 2–3 contacts was also

observed, but less frequently [11].

The free energy barrier seems to have an important entropic component in both

helical peptides and antiparallel b-sheets. In an a-helix, it originates from con-

straining the backbone conformation of three consecutive amino acids before the

first helical hydrogen bond can form, while in the antiparallel b-sheet it is due to

the constraining of a b-hairpin onto which a third strand can coalesce [11]. There-

fore, the folding of the two most common types of secondary structure seems to

have similarities (a mainly entropic nucleation barrier and an exponential folding

rate) as well as important differences (location of the barrier and multiple vs. two

pathways). The similarities are in accord with a plethora of experimental and theo-

retical evidence [20] while the differences might be a consequence of the fact that

Y(MEARA)6 has about 7–9 helical turns whereas the three-stranded antiparallel b-

sheet consists of only two ‘‘minimal blocks’’, i.e., two b-hairpins.

32.2.1.2 Non-Arrhenius Temperature Dependence of the Folding Rate

Small molecule reactions show an Arrhenius-like temperature dependence, i.e.,

faster rates at higher temperatures. Protein folding is a complex reaction involving

many degrees of freedom; the folding rate is Arrhenius-like at physiological tem-

peratures, but deviates from Arrhenius behavior at higher temperatures [20].

To quantitatively investigate the kinetics of folding, MD simulations of two

model peptides, Ace-(AAQAA)3-NHCH3 (a-helical stable structure) and Ace-

V5
DPGV5-NH2 (b-hairpin), were performed using the same implicit solvation

model [13]. Folding and unfolding at different temperature values were studied by

862 simulations for a total of 4 ms [21]. Different starting conformations (folded
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and random) were used to obtain a statistically significant sampling of conforma-

tional space at each temperature value. An important feature of the folding of both

peptides is the negative activation enthalpy at high temperatures. The rate constant

for folding initially increases with temperature, goes through a maximum at about

Tm, and then decreases [21]. The non-Arrhenius behavior of the folding rate is in

accord with experimental data on two mainly alanine a-helical peptides [22, 23], a

b-hairpin [24], CI2, and barnase [25], lysozyme [26, 27], and lattice simulation re-

sults [28–30]. It has been proposed that the non-Arrhenius profile of the folding

rate originates from the temperature dependence of the hydrophobic interaction

[31, 32]. The MD simulation results show that a non-Arrhenius behavior can arise

at high values of the temperature in a model where all the interactions are temper-

ature independent. This has been found also in lattice simulations [28, 29]. The

curvature of the folding rate at high temperature may be a property of a reaction

dominated by enthalpy at low temperatures and entropy at high temperatures

[30]. The non-Arrhenius behavior for a system where the interactions do not de-

pend on the temperature might be a simple consequence of the temperature de-

pendence of the accessible configuration space. At low temperatures, an increase

in temperature makes it easier to jump over the energy barriers, which are rate

limiting. However, at very high temperatures, a larger portion of the configuration

space becomes accessible, which results in a slowing down of the folding process.

32.2.1.3 Denatured State and Levinthal Paradox

The size of the accessible conformational space and how it depends on the number

of residues is not easy to estimate. To investigate the complexity of the denatured

state four molecular dynamics runs of beta3s were performed at the melting tem-

perature of the model (330 K) for a total simulation time of 12.6 ms [33]. The sim-

ulation length is about two orders of magnitude longer than the average folding or

unfolding time (about 85 ns each), which are similar because at the melting tem-

perature the folded and unfolded states are equally populated. The peptide is

within 2.5 Å Ca root mean square deviation (RMSD) from the folded conformation

about 48% of the time. Figure 32.1 shows the results of a cluster analysis based on

Ca RMSD. There are more than 15 000 conformers (cluster centers) and it is evi-

dent that a plateau has not been reached within the 12.6 ms of simulation time.

However, the number of significantly populated clusters (see Ref. [12] for a de-

tailed description) converges already within 2 ms. Hence, the simulation-length de-

pendence of the total number of clusters is dominated by the small ones. At each

simulation interval between an unfolding event and the successive refolding event

additional conformations are sampled. More than 90% of the unfolded state con-

formations are in small clusters (each containing less than 0.1% of the saved snap-

shots) and the total number of small clusters does not reach a plateau within 12.6

ms. Note that there is also a monotonic growth with simulation time of the number

of snapshots in the folded-state cluster. After 12.6 ms (and also within each of the

four trajectories) the system has sampled an equilibrium of folded and unfolded

states despite a large part of the denatured state ensemble has not yet been ex-

plored. In fact, the average folding time converges to a value around 85 ns which
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shows that the length of each simulation is much larger than the relaxation time of

the slowest conformational change. Interestingly, in the average folding time of

about 85 ns beta3s visits less than 400 clusters (diamond in Figure 32.1). This is

only a small fraction of the total amount of conformers in the denatured state.

It is possible to reconcile the fast folding with the large conformational space by

analyzing the effective energy, which includes all of the contributions to the free

energy except for the configurational entropy of the protein [11, 34]. Fast folding

of beta3s is consistent with the monotonically decreasing profile of the effective en-

ergy (inset in Figure 32.1). Despite the large number of conformers in the dena-

tured state ensemble, the protein chain efficiently finds its way to the folded state

because native-like interactions are on average more stable than nonnative ones.

In conclusion, the unfolded state ensemble at the melting temperature is a large

collection of conformers differing among each other, in agreement with previous

high temperature molecular dynamics simulations [8, 35]. The energy ‘‘bias’’

which makes fast folding possible does not imply that the unfolded state ensemble

is made up of a small number of statistically relevant conformations. The simula-

tions provide further evidence that the number of denatured state conformations

is orders of magnitudes larger than the conformers sampled during a folding

event. This result also suggests that measurements which imply an average

over the unfolded state do not necessarily provide information on the folding

mechanism.

32.2.1.4 Folding Events of Trp-cage

Very small proteins are ideal systems to validate force fields and simulation meth-

odology. Neidigh et al. [36] have truncated and mutated a marginally stable 39-

residue natural sequence thereby designing a 20-residue peptide, the Trp-cage, that

is more than 95% folded in aqueous solution at 280 K. The stability of the Trp-cage

is due to the packing of a Trp side chain within three Pro rings and a Tyr side

chain. Moreover, the C-terminal half contains four Pro residues which dramatically

restrict the conformational space, i.e., entropy, of the unfolded state [36, 37].

Four MD studies have appeared in the 12 months following the publication of

the Trp-cage structure [38–41]. All of the simulations were started from the com-

pletely extended conformation and used different versions of the AMBER force

field and the generalized Born continuum electrostatic solvation model [42]. Two

simulations were run with conventional constant temperature MD at 300 K [40]

and 325 K [38], a third study used replica exchange MD with a range of tempera-

tures from 250 K to 630 K [41], and in the fourth paper distributed computing sim-

ulations at 300 K with full water viscosity were reported [39].

An important problem of the three constant temperature studies is that the Trp-

cage seems to fold to a very deep free energy minimum and no unfolding events

have been observed [38–40]. Moreover, only one folding event is presented by Sim-

merling et al. [38] and Chowdhury et al. [40]. The poor statistics does not allow to

draw any conclusions on free energy landscapes or on the folding mechanism of

the Trp-cage.

Another potential problem is the discrepancy between the most stable state
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sampled by MD and the NMR conformers. Only in two of the four MD studies

NOE distance restraints were measured along the trajectories and about 20% were

found to be violated [40, 41]. Moreover, as explicitly stated by the authors, the na-

tive state sampled by distributed computing contains a p-helix (instead of the a-

helix) and the Trp is not packed correctly in the core [39]. These discrepancies

are significant because the Trp-cage has a very small core and a rather rigid C-

terminal segment.

32.2.2

Unfolding Simulations of Proteins

32.2.2.1 High-temperature Simulations

Since the early work of Daggett and Levitt [43] and Caflisch and Karplus [44], sev-

eral other high-temperature simulation studies have been concerned with explor-

ing protein unfolding pathways. Several comprehensive review articles exist on

this simulation protocol [45] which has been widely used since. Recent MD sim-

ulations at temperatures of 100 �C and 225 �C of a three-helix bundle 61-residue

protein, the engrailed homeodomain (En-HD), by Daggett and coworkers [46, 47]

have been used to analyze a folding intermediate at atomic level of detail. The un-

folding half-life of the En-HD at 100 �C has been extrapolated to be about 7.5 ns, a

time scale that can be accessed by MD simulations with explicit water molecules.

Also, unfolding simulations in the presence of explicit urea molecules have

shown that the protein (barnase) remains stable at 300 K but unfolds partially at

moderately high temperature (360 K) [48]. The results suggested a mechanism for

urea induced unfolding due to the interaction of urea with both polar and nonpolar

groups of the protein.

32.2.2.2 Biased Unfolding

Because of the limitations on simulation times and height of the barriers to confor-

mational transitions in proteins, a number of methods, alternative to the use of

high, nonphysical temperatures, have been proposed to accelerate such transitions

by the introduction of an external time-dependent perturbation [49–54]. The per-

turbation induce the reaction of interest in a reasonable amount of time (the

strength of the perturbation is inversely proportional to the available computer

time). These methods have been used for studying not only protein unfolding at

native or realistic denaturing conditions, but also large conformational changes be-

tween known relevant conformers [51]. Their goal is to generate pathways which

are realistic, in spite of the several orders of magnitude reduction in the time re-

quired for the conformational change. They are not alternatives to methods to

compute free energy profiles along defined pathways. The external perturbation is

usually applied to a function of the coordinates which is assumed to vary monot-

onically as the protein goes from the native to the nonnative state of interest. For

certain perturbations the unfolding pathways obtained have been shown to depend

on the nature of the perturbation and the choice of the reaction coordinate [52];
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this is even more the case when the perturbation is strong and the reaction is in-

duced too quickly for the system to relax along the pathway.

A perturbation which is particularly ‘‘gentle’’ since it exploits the intrinsic ther-

mal fluctuations of the system and produces the acceleration by selecting the fluc-

tuations that correspond to the motion along the reaction coordinate has also been

used to unfold proteins [55, 56]. This perturbation has been employed, in particu-

lar, to expand a-lactalbumin by increasing its radius of gyration starting from the

native state, and generate a large number of low-energy conformers that differ in

terms of their root mean square deviation, for a given radius of gyration. The re-

sulting structures were relaxed by unbiased simulations and used as models of

the molten globule (see Chapter 23) and more unfolded denatured states of a-

lactalbumin based on measured radii of gyration obtained from nuclear magnetic

resonance experiments [57]. The ensemble of compact nonnative structures agree

in their overall properties with experimental data available for the a-lactalbumin

molten globule, showing that the native-like fold of the a-domain is preserved and

that a considerable proportion of the antiparallel b-sheet in the b-domain is pres-

ent. This indicated that the lack of hydrogen exchange protection found experi-

mentally for the b-domain [58] is due to rearrangement of the b-sheet involving

transient populations of nonnative b-structures in agreement with more recent in-

frared spectroscopy measurements [59]. The simulations also provide details con-

cerning the ensemble of structures that contribute as the molten globule unfolds

and shows, in accord with experimental data [60], that the unfolding is not cooper-

ative, i.e., the various structural elements do not unfold simultaneously.

32.2.2.3 Forced Unfolding

Unfolding by stretching proteins individually has become routinely mainly thanks

to the advent of the atomic force microscopy technology [61]. This peculiar way of

unfolding proteins opened new perspectives on protein folding studies. Experi-

ments are usually performed on engineered homopolyproteins, and the I27 do-

main from titin has become the reference system for this type of studies. Ex-

periments measure force-extension profiles, and show typical ‘‘saw-tooth’’ profiles,

where peaks are due to the sudden unfolding of individual domains, sequentially

in time, causing a drop in the recorded force. These profiles are generally inter-

preted assuming that the unfolding event is determined by a single barrier which

is decreased by the external force. For a detailed description of the experimental

techniques and of the most recent results on forced unfolding of single molecules

(by atomic force microscopy and optical tweezers) see Chapter 31.

To provide a structural interpretation of the typical saw-tooth-like spectra mea-

sured in single molecule stretching experiments, various simulation techniques

have been proposed, where detailed all-atom models of proteins are stretched by

pulling two atoms apart [62, 63], differing mainly in the way the solvent is treated.

In some cases simulation can effectively explain the force patterns measured

(see Ref. [64] for a review). For all the proteins experimentally unfolded by pulling,

only a simple saw-tooth pattern has been recorded related to the sudden unfolding
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when the protein was pulled beyond a certain length, i.e., a simple two-state behav-

ior. Simulations showed a more complex behavior [63] with possible intermediates

on the forced unfolding pathways for certain proteins.1

Simulation has been used [65] to compare forced unfolding of two protein

classes (all-b-sandwich proteins and all-a-helix bundle proteins). In particular, sim-

ulations suggested that different proteins should show a significantly different

forced unfolding behavior, both within a protein class and for the different classes

and dramatic differences between the unfolding induced by high temperature and

by external pulling forces. The result was shown to be correlated to the type of per-

turbation, the folding topologies, the nature of the secondary and tertiary interac-

tions and the relative stability of the various structural elements [65]. Improve-

ments in the AFM technique combined with protein engineering methods have

now confirmed (see Chapter 31) that chemical (or thermal) and forced unfolding

occur through different pathways and that forced unfolding is related to crossing

of a free energy barrier which might not be unique, but might change with force

magnitude or upon specific mutations [66].

It should be borne in mind, however, that the forced unfolding of proteins is a

nonequilibrium phenomenon strongly dependent on the pulling speed, and, since

time scales in simulations and experiments are very different, the respective path-

ways need not to be the same. Recently, through a combination of experimental

analysis and molecular dynamics simulations it has been shown that, in the case

of mechanical unfolding, pathways might effectively be the same in a large range

of pulling speeds or forces [67, 68], thus providing another demonstration of the

robustness of the energy landscape (i.e., the funnel-like shape of the free energy

surface sculpted by evolution is not affected by the application of even strong per-

turbations [69, 70]). In two recent papers [71, 72] it has been shown that proteins

resist differently when pulled in different directions. In both cases the experiments

have been complemented with simulations, with either explicit or implicit solvents.

In both cases the behavior observed experimentally is qualitatively reproduced.

This fact strongly suggests, although does not prove it, that in this particular case

the forced unfolding mechanisms explored in the simulations is the same as that

which determines the experimentally measured force.

Difference between solvation models is discussed in detail in Section 32.3.4 in

the context of forced unfolding simulations, the disadvantage of an explicit solva-

tion model [62, 72, 73] relative to an implicit [63, 65, 67, 68, 71] is not only that of

being much slower, but also to provide an environment which relaxes slowly rela-

tive to the fast unraveling of the protein under force. Moreover, properly hydrating

with explicit water a partially extended protein requires a large quantity of water,

thus requiring a very large amount of CPU time for a single simulation. Implicit

solvent models, on the other hand, allow unfolding to be performed at much lower

1) The presence of ‘‘ late’’ intermediates on the

forced unfolding pathway was first observed

[63] in the 10th domain of fibronectin type III

from fibronectin (FNfn3). A more complex

pattern than equally spaced peaks in the force

extension profile was predicted to arise from

the presence of a kinetically metastable

state. Most recent experimental results (J.

Fernandez, personal communication) confirm

the behavior predicted by the simulation.
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forces (or pulling speeds) and multiple simulations to be used to study the depen-

dence of the results on the initial conditions and/or on the applied force.

32.2.3

Determination of the Transition State Ensemble

The understanding of the folding mechanism has crucially advanced since the

development of a method which provide information on the transition state [74]

(see Chapter 13). The method allows the structure of the transition state at the

level of single residue to be probed by measuring the change in folding and unfold-

ing rates upon mutations. The method provides a so-called f-value for each of the

mutated residues which is a measure of the formation of native structure around

the residue: a f-value of 1 suggests that the residue is in a native environment at

the transition state while a f-value of 0 can be interpreted as a loss of the interac-

tions of the residue at the transition state. Fractional f-values are more difficult to

interpret, but have been shown to arise from weakened interactions [75] and not

from a mixture of species, some with fully formed and some with fully broken

interaction.

As we discussed in Section 32.2.2.1, the use of high temperature makes it possi-

ble to observe the unfolding of a protein by MD on a time scale which can be simu-

lated on current computers. Valerie Daggett and collaborators [76] first had the

idea of performing a very high-temperature simulation and looking for a sudden

change in the structure of the protein along the trajectory, indicating the escape

from the native minimum of the free energy surface. The collections of structures

around the ‘‘jump’’ were assumed to constitute a sample of the putative transition

state. Assuming that the experimental f-values correspond in microscopic terms to

fraction of native contacts, they found a good agreement between calculated and

experimental values. This approach was initially applied to the protein CI2, a small

two-state proteins which has been probably the most thoroughly studied by experi-

mental f-value analysis; it has been subsequently improved and extended to the

study of several proteins for which experimental f-values were available (see Ref.

[77] for review and other references).

Another related method has been used recently [78] to unfold a protein by high-

temperature simulation (srcSH3 in the specific case) and determine a putative

transition state by looking for conformations where the difference between calcu-

lated and experimental f-values was smallest.

Both methods presented above have the advantage of providing structures ex-

tracted from an unfolding trajectory and thus the fast refolding or complete un-

folding from these structures (a property of transition states) has been reported

[78, 79]. But both approaches only provide few transition state structures, because

a long simulation is required to generate each member of the transition state en-

semble, while the transition state can be a quite broad ensemble for some proteins

[80].

In a recent development, it has been shown that the amount of information that

can be obtained from experimental measurements can be expanded further by
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using the data to build up phenomenological energy functions to bias computer

generated trajectories. With this approach (see Section 32.3.2 for a more detailed

description of the technique), conformations compatible with experimental data

are determined directly during the simulations [81, 82], rather than being obtained

from filtering procedures such as those discussed above [78]. The incorporation of

experimental data into the energy function creates a minimum in correspondence

of the state observed experimentally and therefore allows for a very efficient sam-

pling of conformational space. The transition state for folding of acylphosphatase

(see Figure 32.2) was determined in this way [81, 82], showing that the network

of interactions that stabilize the transition state is established when a few key resi-

dues form their native-like arrangement.

Based on this computational technique, a general approach in which theory and

experiments are combined in an iterative manner to provide a detailed description

of the transition state ensemble has been recently proposed [83]. In the first itera-

tion, a coarse-grained determination of the transition state ensemble (TSE) is car-

ried out by using a limited set of experimental f-values as constraints in a molecu-

lar dynamics simulation. The resulting model of the TSE is used to determine the

additional residues whose f-value measurement would provide the most informa-

tion for refining the TSE. Successive iterations with an increasing number of f-

value measurements are carried out until no further changes in the properties of

the TSE are detected or there are no additional residues whose f-values can be

Fig. 32.2. Comparison between the native

state structure (left) and the most representa-

tive structures of the transition state ensemble

of AcP, determined by all-atom molecular

dynamics simulations [82]. Native secondary

structure elements are show in color (the two

a-helices are plotted in red and the b-sheet in

green). The three key residues for folding are

shown as gold spheres [81, 82]. Figure from

Ref. [69].
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measured. The method can be also used to find key residues for folding (i.e., those

that are most important for the formation of the TSE).

The study of the transition state represents probably the most interesting exam-

ple of how experiment and molecular dynamics simulations complement each

other in understanding and visualizing the folding mechanisms in terms of rele-

vant structures involved. Simulations are performed with approximate force fields

and unfolding induced using artificial means (such as high temperature or other

perturbations). At this stage in the development of MD simulations, the experi-

ment provides evidence that what is observed in silico is consistent with what hap-

pens in vitro. On the other hand, and particularly in the case in which the full en-

semble of conformations compatible with the experimental results is generated

[82, 83], the simulation suggests further mutations to increase the resolution of

the picture of the transition state, and allows detailed hypothesis of the mecha-

nisms, such as the identity and structure of the residues involved in the folding

nucleus [150].

32.3

MD Techniques and Protocols

32.3.1

Techniques to Improve Sampling

A thorough sampling of the relevant conformations is required to accurately de-

scribe the thermodynamics and kinetics of protein folding. Since the energetic

and entropic barriers are higher than the thermal energy at physiological tempera-

ture, standard MD techniques often fail to adequately sample the conformational

space. As already mentioned in this chapter, even for a small protein it is currently

not yet feasible to simulate reversible folding with a high-resolution approach (e.g.,

MD simulations with an all-atom model). The practical difficulties in performing

such brute force simulations have led to several types of computational approaches

and/or approximative models to study protein folding. An interesting approach is

to unfold starting from the native structure [84–86] but detailed comparison with

experiments [47] is mandatory to make sure that the high-temperature sampling

does not introduce artifacts. In addition, a number of approaches to enhance sam-

pling of phase space have been introduced [87, 88]. They are based on adaptive

umbrella sampling [89], generalized ensembles (e.g., entropic sampling, multi-

canonical methods, replica exchange methods) [90], modified Hamiltonians [91–

93], multiple time steps [94], or combinations thereof.

32.3.1.1 Replica Exchange Molecular Dynamics

Replica exchange is an efficient way to simulate complex systems at low tempera-

ture and is the simplest and most general form of simulated tempering [95]. Su-

gita and Okamoto have been the first to extend the original formulation of replica

exchange into an MD-based version (REMD), testing it on the pentapeptide Met-
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enkephalin in vacuo [96]. The basic idea of REMD is to simulate different copies

(replicas) of the system at the same time but at different temperatures values.

We recently applied a REMD protocol to implicit solvent simulations of a 20-

residue three-stranded antiparallel b-sheet peptide (beta3s) [97]. Each replica

evolves independently by MD and every 1000 MD steps (2 ps), states i; j with
neighbor temperatures are swapped (by velocity rescaling) with a probability wij ¼
expð�DÞ [96], where D1 ðbi � bjÞðEj � EiÞ, b ¼ 1=kT and E is the potential energy.

During the 1000 MD steps the Berendsen thermostat [98] is used to keep the tem-

perature close to a given value. This rather tight coupling and the length of each

MD segment (2 ps) allow the kinetic and potential energy of the system to relax.

High temperature simulation segments facilitate the crossing of the energy bar-

riers while the low-temperature ones explore in detail the conformations present

in the minimum energy basins. The result of this swapping between different tem-

peratures is that high-temperature replicas help the low-temperature ones to jump

across the energy barriers of the system. In the beta3s study eight replicas were

used with temperatures between 275 and 465 K [97].

The higher the number of degrees of freedom in the system the more replicas

should be used. It is not clear how many replicas should be used if a peptide or

protein is simulated with explicit water. The transition probability between two

temperatures depends on the overlap of the energy histograms. The histograms’

width depends on 1=
ffiffiffiffi
N

p
(where N is the size of the system). Hence, the number

of replicas required to cover a given temperature range increases with the size.

Moreover, in order to have a random walk in temperature space (and then a ran-

dom walk in energy space which enhances the sampling), all the temperature

exchanges should occur with the same probability. This probability should be at

least of 20–30%. To optimize the efficiency of the method, one should find the

best compromise between the number of replicas to be used, the temperature

space to cover and the acceptance ratios for temperature exchanges. In the litera-

ture there is no clear indication about the selection of temperatures and empirical

methods are usually applied (weak point of the method). The choice of the bound-

ary temperatures depends on the system under study. The highest temperature has

to be chosen in order to overcome the highest energy barriers (probably higher in

explicit water) separating different basins; the lowest temperature to investigate the

details of the different basins.

Sanbonmatsu and Garcia have applied REMD to investigate the structure of Met-

enkephalin in explicit water [99] and the a-helical stabilization by the arginine side

chain which was found to originate from the shielding of main-chain hydrogen

bonds [100]. Furthermore, the energy landscape of the C-terminal b-hairpin of

protein G in explicit water has been investigated by REMD [101, 102]. Recently, a

multiplexed approach with multiple replicas for each temperature level has been

applied to large-scale distributed computing of the folding of a 23-residue minipro-

tein [103]. Starting from a completely extended chain, conformations close to the

NMR structures were reached in about 100 trajectories (out of a total of 4000) but

no evidence of reversible folding (i.e., several folding and unfolding events in the

same trajectory) was presented [103].
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32.3.1.2 Methods Based on Path Sampling

A very promising computational method, called transition path sampling (reviewed

in Ref. [104]) has been recently used [105] to study the folding of a b-hairpin in

explicit solvent. The method allows in principle the study of rare events (such as

protein folding) without requiring knowledge of the mechanisms, reaction coordi-

nates, and transition states. Transition path sampling focuses on the sampling not

of conformations but of trajectories linking two conformations or regions (possibly

basins of attraction) in the conformational space. Other methods focus on building

ensemble of paths connecting states; the stochastic path approach [106] and the re-

action path method [107] have been also used to study the folding of peptides and

small proteins in explicit solvent. The stochastic path ensemble and the reaction

path methods introduce a bias in the computed trajectories but allow the explora-

tion of long time scales. All the methods mentioned above are promising but rely

on the choice of a somewhat arbitrary initial unfolded conformation beside the fi-

nal native one.

32.3.2

MD with Restraints

A method to generate structures belonging to the TSE ensemble discussed in Sec-

tion 32.2.3 consists in performing molecular dynamics simulations restrained with

a pseudo-energy function based on the set of experimental f-values. The f-values

are interpreted as the fraction of native contacts present in the structures that con-

tribute to the TSE. With this restraint the TSE becomes the most stable state on the

potential energy surface rather than being an unstable region, as it is for the true

energy function of the protein. This procedure is conceptually related to that used

to generate native state structures compatible with measurements from nuclear

magnetic resonance (NMR) experiments, in that pseudo-energy terms involving ex-

perimental restraints are added to the protein force field [108, 109]. The main dif-

ference is that an approach is required to sample a broad state compatible with

some experimental restraints, rather than a method to search for an essentially

unique native structure.

The method is based on molecular dynamics simulations using an all-atom

model of the protein [110, 111] and an implicit model for the solvent [112] with

an additional term in the energy function:

r ¼ 1

Nf

X

i AE

ðfi � f
exp
i Þ2 ð1Þ

where E is the list of the Nf available experimental f-values, f
exp
i . The f i-value of

amino acid i in the conformation at time t is defined as

fiðtÞ ¼
NiðtÞ
N nat

i

ð2Þ
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where NiðtÞ is the number of native contacts of i at time t and N nat
i the number of

native contacts of i in the native state.

Molecular dynamics simulations are then performed to sample all the possible

structures compatible with the restraints. The structures thus generated are not

necessarily at the transition state for folding for the potential used. They provide

instead a structural model of the experimental transition state, including all possi-

ble structures compatible with the restraints derived from the experiment. The ex-

perimental information provided by the f-values might not be enough to restrain

the sampling to meaningful structures (e.g., when only few mutations have been

performed). In such circumstance, other experimentally measured quantities,

such as the m-value, which is related to the solvent accessible surface, must be

used to restrain the sampling or to a posteriori select meaningful structures.

This type of computational approach relies on the assumption implicit in Eq. (2).

This consists in approximating a f-value, measured as a ratio of free energy varia-

tions upon mutation, as a ratio of side-chain contacts. A definition based on side-

chains is appropriate since experimental f-values are primarily a measure of the

loss of side-chain contacts at the transition state, relative to the native state. Al-

though simply counting contacts, rather than calculating their energies, is a crude

approximation [113], it has been shown that there is a good correlation between

loss of stability and loss of side-chain contacts within about 6 Å on mutation

[114]. Also, Shea et al. [115] have found in their model calculations that this ap-

proximation for estimating f-values from structures is a good one under certain

conditions. A more detailed relation between experimental f-values and atomic

contacts could in principle be established by using the energies of the all-atom con-

tacts made by the side chain of the mutated amino acid.

The same approach can be extended to generate the structures corresponding to

other unfolded or intermediate states as the site-specific information provided by

the experiment is steadily increasing (see Chapters 20 and 21).

32.3.3

Distributed Computing Approach

As mentioned in the introduction, the problem of simulating the folding process

of any sequence from a random conformation is mainly a problem of potentials

and computer time. Duan and Kollman [116] have showed that a huge effort in

parallelizing (on a medium-scale, 256 processors) an MD code and exploiting for

several months a several million dollars computer (a Cray T3E) could lead to the

simulation of 1 ms of the small protein villin headpiece. Even approaching the typ-

ical experimental folding times (which is, however, larger than 1 ms for most pro-

teins), a statistical characterization of the folding process is still impossible in the

foreseeable future.

Developing a large-scale parallelization method seems the most viable approach,

as the cost of fast CPUs decreases steadily and their performances approach those

of much more expensive mainframes. Time being sequential, MD codes are not

massively parallelizable in an efficient way. A good scaling is usually obtained for
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large systems with explicit water and a relatively small number of processors (be-

tween 2 and 100, depending on the program and the problem studied). One

approach has been proposed that allows the scalability of a MD simulation to be

pushed to the level of being able to use efficiently a network of heterogeneous and

loosely connected computer [117]. The approach (called distributed computing) ex-

ploits the stochastic nature of the folding process. In general protein folding in-

volves the crossing of free energy barriers. The approach is most easily understood

assuming that the proteins have a single barrier and a single exponential kinetic

(which is the case for a large number of small proteins [118]). The probability that

a protein is folded after a time t is PðtÞ ¼ 1� expð�ktÞ, where k is the folding rate.

Thus, for short times, and considering M proteins or independent simulations, the

probability of observing a folding event is Mkt. So, if M is large, there is a sizable

probability of observing a folding event on simulations much shorter than the time

constant of the folding process [119]. The folding rate could then in principle be

estimated by running M independent simulations (starting from the completely

extended conformation with different random velocities) for a time t and counting

the number N of simulations which end up in the folded state as k ¼ N=ðMtÞ.
Simulations have been reported where the folding rate estimated in this way

(assuming that partial refolding counts as folding) is in good agreement with the

experimental one (see, for example, Ref. [39]).

However, it has been argued [120] that even for simple two-state proteins, fold-

ing has a series of early conformational steps that lead to lag phases at the begin-

ning of the kinetics. Their presence can bias short simulations toward selecting

minor pathways that have fewer or faster lag steps and so miss the major folding

pathways. This fact has been clearly observed by comparing equilibrium and fast

folding trajectories simulations [121] for a 20-residue three-stranded antiparallel

b-sheet peptide (beta3s). It was found that the folding rate is estimated correctly

by the distributed computing approach when trajectories longer than a fraction of

the equilibrium folding time are considered; in the case of the 20-residue peptide

studied within the frictionless implicit solvation model used for the simulations,

this time is about 1% of the average folding time at equilibrium. However, careful

analysis of the folding trajectories showed that the fastest folding events occur

through high-energy pathways, which are unlikely under equilibrium conditions

(see Section 32.2.1.1). Along these very fast folding pathways the peptide does not

relax within the equilibrium denatured state which is stabilized by the transient

presence of both native and nonnative interactions. Instead, collapse and formation

of native interactions coincides and, unlike at equilibrium, the formation of the

two b-hairpins is nearly simultaneous.

These results demonstrate that the ability to predict the folding rate does not

imply that the folding mechanisms are correctly characterized: the fast folding

events occur through a pathway that is very unlikely at equilibrium. However, ex-

tending the time scale of the short simulations to 10% of the equilibrium folding

time, the folding mechanism of the fast folding events becomes almost indistin-

guishable from equilibrium folding events. It must be stressed that this result is

not general but concerns the specific peptide studied; the explicit presence of sol-
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vent molecule (and the consequent friction), might decrease the differences be-

tween equilibrium and shortest folding events. Unfortunately, this kind of valida-

tion of the distributed computing approach is not possible for a generic protein in

a realistic solvent, as equilibrium simulations are not feasible.

An alternative method to use many processors simultaneously to access time

scales relevant in the folding process by MD simulations has recently been pro-

posed by Settanni et al. [122]. The method is based on parallel MD simulations

that are started from the denatured state; trajectories are periodically interrupted,

and are restarted only if they approach the transition (or some other target) state.

In other words, the method choses trajectories along which a cost function de-

creases. The effectiveness of such an approach was shown by determining the

transition state for folding an SH3 domain using as cost function the deviation be-

tween experimental and computed f-values (Eq. (1) in Section 32.3.2). The method

can efficiently use a large number of computers simultaneously because simula-

tions are loosely coupled (i.e., only the comparison between final conformations,

needed periodically to choose which trajectory to restart, involve communications

between CPUs). This method can also be extended to complex nondifferentiable

cost functions.

32.3.4

Implicit Solvent Models versus Explicit Water

Incorporating solvent effects in MD and Monte-Carlo simulations is of key impor-

tance in quantitatively understanding the chemical and physical properties of

biomolecular processes. Accurate electrostatic energies of proteins in an aqueous

environment are needed in order to discriminate between native and nonnative

conformations. An exact evaluation of electrostatic energies considers the interac-

tions among all possible solute–solute, solute–solvent, and solvent–solvent pairs

of charges. However, this is computationally expensive for macromolecules. Con-

tinuum dielectric approximations offer a more tractable approach [123–127]. The

essential concept in continuum models is to represent the solvent by a high dielec-

tric medium, which eliminates the solvent degrees of freedom, and to describe the

macromolecule as a region with a low dielectric constant and a spatial charge dis-

tribution. The Poisson equation provides an exact description of such a system.

The increase in computation speed for a finite difference solution of the Poisson

equation [128–131] with respect to an explicit treatment of the solvent is remark-

able but still not enough for effective utilization in computer simulations of macro-

molecules. The generalized Born (GB) model was introduced to facilitate an effi-

cient evaluation of continuum electrostatic energies [42]. It provides accurate

energetics and the most efficient implementations are between five and ten times

slower than in vacuo simulations [132–134]. The essential element of the GB

approach is the calculation of an effective Born radius for each atom in the system

which is a measure of how deeply the atom is buried inside the protein. This infor-

mation is combined in a heuristic way to obtain a correction to the Coulomb law

for each atom pair [42]. For the integration of energy density, necessary to obtain

the effective Born radii, both numerical [42, 132, 135] and analytical [134, 136, 137]
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implementations exist. The former are more accurate but slower than the latter

[135]. Moreover, analytical derivatives that are required for MD simulations are

not given by numerical implementations.

For efficiency reasons empirical dielectric screening functions are the most com-

mon choice in MD simulations with implicit solvent. One kind of solvation model

is based on the use of a dielectric function that depends linearly on the distance r
between two charges ðeðrÞ ¼ arÞ [138, 139] or has a sigmoidal shape [140, 141]. Al-

though very fast, these options suffer from their inability to discriminate between

buried and solvent exposed regions of a macromolecule and are therefore rather

inaccurate. A distance and exposure dependent dielectric function has been pro-

posed [142]. Recently, an approach based on the distribution of solute atomic vol-

umes around pairs of charges in a macromolecule has been proposed to calculate

the effective dielectric function of proteins in aqueous solution [143].

The simulation results presented in Section 32.2.1 were obtained using an im-

plicit solvent model based on a fast analytical approximation of the solvent accessi-

ble surface (SAS) [13] and the CHARMM force field [110]. The former drastically

reduces the computational cost with respect to an explicit solvent simulation. The

SAS model is based on the approximation proposed by Lazaridis and Karplus [112]

for dielectric shielding due to the solvent, and the surface area model for the hydro-

phobic effect introduced by Eisenberg and McLachlan [144]. Electrostatic screening

effects are approximated by a distance-dependent dielectric function and a set of

partial charges with neutralized ionic groups [112]. An approximate analytical ex-

pression [145] is employed to calculate the SAS because an exact analytical or nu-

merical computation of the SAS is too slow to compete with simulations in explicit

solvent. The SAS model is based on the assumptions that most of the solvation en-

ergy arises from the first water shell around the protein [144] and that two atomic

solvation parameters are sufficient to describe these effects at a qualitative level

of accuracy. Within these assumptions, the SAS energy term approximates the

solute–solvent interactions (i.e., it should account for the energy of cavity forma-

tion, solute–solvent dispersion interactions, and the direct (or Born) solvation of

polar groups). The two atomic solvation parameters were optimized by performing

1 ns MD simulations at 300 K on six small proteins [13]. It is important to under-

line that the structured peptides discussed in Section 32.2.1 were not used for the

calibration of the SAS atomic solvation parameters. The SAS model is a good ap-

proximation for investigating the folded and denatured state (large ensemble of

conformers) of structured peptides. Its limitations, in particular for highly charged

peptides and large proteins, have been discussed [13].

The most detailed and physically sound approaches (e.g., explicit solvent and

particle mesh Ewald treatment of the long-range electrostatic interactions [146])

are still approximations and might introduces artifacts (see, for example, Ref.

[147]). All solvation models, even those computationally most expensive, are ap-

proximations and their range of validity is difficult to explore. It is likely that most

proteins will unfold fast relative to the experimental time scale if one could afford

long (e.g., 100 ns) explicit water MD simulations even at room temperature. Some

evidence of this instability has been recently published [148].
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32.4

Conclusion

It is a very exciting time for studying protein folding using multidisciplinary ap-

proaches rooted in physics, chemistry, and computer science. The time scale gap

between folding in vitro and in silico is being continuously reduced and this will

bring interesting surprises. We expect an increasing role of MD simulations in

the elucidation of protein folding thanks to further improvements in force fields

and solvation models.
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