
2362 Biophysical Journal Volume 108 May 2015 2362–2370
Article
Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative
Salt Bridges
Nicolas Blöchliger,1 Min Xu,1 and Amedeo Caflisch1,*
1Department of Biochemistry, University of Zurich, Zurich, Switzerland
ABSTRACT We have captured the binding of a peptide to a PDZ domain by unbiased molecular dynamics simulations. Anal-
ysis of the trajectories reveals on-pathway encounter complex formation, which is driven by electrostatic interactions between
negatively charged carboxylate groups in the peptide and positively charged side chains surrounding the binding site. In
contrast, the final stereospecific complex, which matches the crystal structure, features completely different interactions, namely
the burial of the hydrophobic side chain of the peptide C-terminal residue and backbone hydrogen bonds. The simulations show
that nonnative salt bridges stabilize kinetically the encounter complex during binding. Unbinding follows the inverse sequence of
events with the same nonnative salt bridges in the encounter complex. Thus, in contrast to protein folding, which is driven by
native interactions, the binding of charged peptides can be steered by nonnative interactions, which might be a general mech-
anism, e.g., in the recognition of histone tails by bromodomains.
INTRODUCTION
The fundamental process of protein-protein binding can be
conceptualized as diffusional association followed by for-
mation of the stereospecific complex (1–3). Long-range
electrostatic forces can significantly accelerate and guide
diffusional association, a phenomenon termed electrostatic
steering (1,3–9). Association results in a relatively weak
encounter complex, which is stabilized mainly by nonspe-
cific interactions and whose binding interface is not yet
fully desolvated (1,2,7,10,11). Crossing the transition state,
potentially through multiple pathways (12), specific short-
range hydrogen bonds and hydrophobic interactions form
and the stereospecific complex is reached (1).

PDZ (PSD-95/Discs large/ZO-1) domains, which are
found in scaffold proteins involved in signaling (13–15),
have been used as model systems to study peptide binding
(16,17). They share a common fold with six b-strands and
two a-helices (Fig. 1 A) and mainly interact with target pro-
teins by binding their C-termini (13,18), although binding to
internal protein segments has been reported as well (19). In
the stereospecific complex the side chain of a hydrophobic
residue at the C-terminus of the target is buried and its
carboxylate group interacts with the carboxylate-binding
loop. In addition, backbone hydrogen bonds create an inter-
molecular b-sheet, and specificity is achieved by side-chain
interactions (13,20,21).

In a previous molecular dynamics (MD) study on the third
PDZ domain of the postsynaptic density protein 95, we
focused the analysis on the binding site of the PDZ domain
by comparing MD runs of the apo structure of the PDZ
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domain with MD runs started from the bound state (22).
This comparison suggested that the peptide binds by con-
formational selection. No peptide dissociation event was
observed because the length of each of the four trajectories
started from the bound state was <0.2 ms. Several other
MD simulations of PDZ domains have been performed
during the last few years (23–27). However, we are not
aware of any MD simulations of the binding of peptides
to PDZ domains. Although unbiased MD simulations of
sub-ms length have been used already to study the (revers-
ible) binding of small and mainly rigid molecules to proteins
(28–32), it is much more challenging to simulate the binding
of flexible (oligo)peptides to proteins because the larger
conformational space requires significantly longer trajec-
tories (9,12,33).

Here, we report on unbiased, multiple MD simulations of
2.1–3.6 ms each, which were carried out to characterize the
binding and unbinding of the C-terminal hexapeptide
segment Acetyl-EQVSAV of the Ras-associating guanine
nucleotide exchange factor 2 (RA-GEF2, also known as
PDZ-GEF2 or RapGEF6) (34) to the second PDZ domain
of protein tyrosine phosphatase 1E (PTP1E, also known as
PTPL1, FAP-1, or PTP-Bas) (35,36). This study focuses
on the intermolecular interactions during the (un)binding
process and was motivated by the following questions. Is
it possible to capture the spontaneous binding of a flexible
hexapeptide to the PDZ domain by MD simulations on a
conventional compute cluster? What is the role of the elec-
trostatic interactions in the initial association and final bind-
ing? Does the binding proceed through native interactions,
i.e., via the intermolecular contacts of the stereospecific
complex as observed in the crystal structure? Is unbinding
the reverse of binding?
http://dx.doi.org/10.1016/j.bpj.2015.03.038
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FIGURE 1 Initial association of the peptide and the PDZ domain by elec-

trostatic steering. (A) Crystal structure of the stereospecific complex of

PTP1E PDZ2 and the C-terminal RA-GEF2 peptide (PDB code 3LNY).

The PDZ domain is shown in white with some secondary structure elements

labeled. The peptide and its sequence are in red. (B) Surface of initial asso-

ciation. PDZ residues having an average contact frequency with the peptide

residues of at least 0.1 during association are shown in a stick-like represen-

tation (see Materials and Methods). The structure and the orientation are the

same as in (A). The contact frequency values are shown in Fig. S1. (C) Elec-

trostatic surface potential. The color scale ranges from �5 kT/e (red) to 5

kT/e (blue). The orientation is the same as in (A) for the left panel. All

illustrations were rendered with VMD (85). To see this figure in color, go

online.
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We observed multiple events of spontaneous binding in
10 MD runs of ~2.3 ms each started from fully unbound,
and several rebinding events in 10 MD runs of ~3.4 ms
each started from the crystal structure of the complex. Fast
initial association is always driven and stabilized by long-
range electrostatic interactions between negatively charged
carboxylate groups in the peptide and positively charged
side chains in the vicinity of the binding site. These salt
bridges are not present in the final stereospecific complex.
MATERIALS AND METHODS

MD simulations

We carried out 10 independent simulations starting with the peptide placed

randomly in the simulation box (called binding runs in the following) and

10 simulations started from the bound state (called unbinding runs). The to-

tal simulation length amounted to 57 ms.

The coordinates of PTP1E PDZ2 in complex with the C-terminal RA-

GEF2 peptide were downloaded from the protein database (Protein Data

Bank (PDB) code 3LNY, URL www.rcsb.org) (37). The sequence of the

C-terminal RE-GEF2 peptide used here is EQVSAV, and its N-terminus

was capped with acetyl. To reproduce neutral pH conditions, the side chains

of aspartates and glutamates were negatively charged, those of lysines and
arginines were positively charged, and the histidine side chains were

neutral. The structure was solvated in a cubic water box. For the binding

runs the peptide was placed randomly in the box with a resulting mean dis-

tance to the PDZ domain of 12 Å. The size of the box was 73 Å for the bind-

ing runs and 63 Å for the unbinding runs. The simulation system contained

sodium and chloride ions to approximate an ionic strength of 150 mM and

to compensate for the total charge of the two molecules. The simulations

were carried out with GROMACS 4.5.5 (38) using the CHARMM27 force

field (39,40) and the TIP3P water model (41). Periodic boundary conditions

were applied, and electrostatic interactions were evaluated using the parti-

cle-mesh Ewald summation method (42). The van der Waals interactions

were truncated at a cutoff of 10 Å. The temperature of 310 K was kept con-

stant by an external bath with velocity rescaling (43), and the pressure was

kept close to 1 atm by the Berendsen barostat (44). The LINCS algorithm

was used to fix the covalent bonds involving hydrogen atoms (45). The

integration time step was 2 fs, and snapshots were saved every 10 ps.

Each MD run was carried out on 16 cores (i.e., four Xeon5560 CPUs) of

the Schrödinger supercomputer at the University of Zurich, which required

~1 week per ms.
SAPPHIRE plot

Recently, we have developed an algorithm for the analysis of long MD tra-

jectories (46,47). The resulting SAPPHIRE (States And Pathways Projected

with HIgh REsolution) plot is a comprehensive visualization of the thermo-

dynamics and kinetics of the simulated system. A function measuring dis-

tance between snapshots is needed to generate SAPPHIRE plots and can be

freely chosen by the user. We chose the Euclidean distance function on 29

distances between atoms of the peptide and the binding site of the PDZ

domain for the present application. Table S1 in the Supporting Material

contains the full list of atom pairs used.

We briefly describe the method here and refer the reader to the original

publications for more details (46,47). Starting from an arbitrary snapshot,

all the snapshots are sequentially ordered in a stepwise fashion. In each

step, the snapshot closest to any snapshot prior in the sequence becomes

the next entry. The complete sequence of snapshots is called progress index.

Assuming high snapshot density within free energy basins, snapshots

belonging to the same basin are grouped together and distinct states do

not overlap (46). A stochastic algorithm to generate an approximate prog-

ress index has been developed. This algorithm is scalable to large data sets

and was used here. It is important to note that the progress index is not a

reaction coordinate. It is rather a sorting of all MD snapshots to identify ba-

sins without any a priori clustering.

We employ three types of annotation functions to highlight and interpret the

states along the progress index and the pathways connecting them (Fig. 2).

First, we use a kinetic annotation function to localize the individual states

on the progress index. Specifically, for every snapshot i along the progress in-

dex, we plot the average of the mean first-passage times between Ai and Si,

denoted tMFP, where Ai is the set of snapshots added to the progress index

before i and Si is the set of those added after i. The value of this annotation

function is low within a state and high in transition regions, and barriers are

highlighted reliably (although they cannot be interpreted quantitatively)

(46). Second, we plot the actual sampling time of the individual snapshots

to illustrate when and in which sequence the different states were sampled.

This information appears as red dots in Fig. 2 and corresponds to the trace

of the temporal evolution of the system, i.e., the detailed sequence of events

for each MD run. Third, we characterize the states themselves by a structural

annotation. In this casewe have used the distance between the peptide and the

PDZdomain, the solvent accessible surface area of thepeptide, the rootmean-

square deviation (RMSD) of the peptide with respect to a reference structure

after alignment on the PDZ domain, as well as several interatomic distances.

Trajectories from the individual simulation runs were concatenated and

subsampled at 20 ps to generate the SAPHHIRE plot. For the unbinding

runs, the size of the simulation box was adjusted to match the binding

runs after the system has been centered on the PDZ atoms. The stochastic
Biophysical Journal 108(9) 2362–2370
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FIGURE 2 SAPPHIRE plot illustrating the

sampled ensemble. The progress index (x axis) rep-

resents a reordering of the trajectory snapshots that

groups similar snapshots next to each other (see

Materials and Methods). The progress index is an-

notated with kinetic information (tMFP, a function

whose value is low within states and high in transi-

tion regions, black profile in the bottom), sampling

time (red dots), and structural information (middle

and top). The annotation in the top part of the panel

uses binning, with dark blue meaning that the

distance given on the left side (reporting on burial

of the Val0 side chain, intermolecular backbone

hydrogen bonds, and salt bridges) is below the indi-

cated threshold. RMSDpeptide was computed on the

Ca atoms of the peptide with respect to a represen-

tative structure of the major binding mode after

alignment on the PDZ domain. SASApeptide is the

solvent accessible surface area of the peptide. Pep-

tide: PDZ denotes the minimal distance between

the peptide and the PDZ domain. Gray dashed lines

indicate the boundaries between individual simula-

tion runs. The major and minor binding modes of

the stereospecific complex are labeled (black hori-

zontal segments in the bottom). To see this figure in

color, go online.
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algorithm mentioned previously is scalable because of the preorganization

of the data via tree-based, hierarchical clustering (48). The lower and upper

threshold radius and the tree height for the clustering were set to 0.6 Å,

10 Å, and 12. The first snapshot on the progress index is the starting struc-

ture of the first run, i.e., the crystal structure of the bound complex (49). The

number of guesses to find nearest neighbors (46) was set to 104. The method

is implemented in the CAMPARI simulation and analysis package (http://

campari.sourceforge.net).
Contact frequencies

First, the MD trajectory segments were classified as stereospecific complex

or other, where other includes fully unbound and encounter complex. For

this binary classification the kinetic annotation of the SAPPHIRE plot

was used (black profile in Fig. 2), as well as the RMSD of the peptide

with respect to the major binding mode, and various distances between

the peptide and the binding pocket (Figs. S2–S21). This classification is

illustrated in the top of Figs. S2–S21. The 10 binding runs were then

used to compute contact frequencies by employing only the segments

annotated as other (i.e., fully unbound and encounter complex). A contact

is considered to be formed between a residue of the peptide and a residue

of the PDZ domain if two atoms are within 5 Å. The acetyl at the N-ter-

minus of the peptide was considered as an independent residue, and

CAMPARI (http://campari.sourceforge.net) was used for this analysis.
Electrostatic surface potential

The electrostatic potential on the surface of the PDZ domain was calculated

with PDB2PQR (50,51) and APBS (52) using the conformation of the PDZ

domain in the stereospecific complex (PDB entry 3LNY).
Biophysical Journal 108(9) 2362–2370
Binding time and kon

Mean binding times were separately estimated for the binding runs and the

rebinding events observed in the unbinding runs as t ¼ tunbound/n, where

tunbound is the total time the peptide is not bound as in the stereospecific

complex (defined previously and annotated in Figs. S2–S21) and n is the

number of binding events. For the binding runs n ¼ 5 and t ¼ 3.8 ms.

We observed n ¼ 3 rebinding events in the unbinding runs, resulting in

t ¼ 2.4 ms. The rate constant kon was estimated to be 1/t [peptide], where

[peptide] ¼ 4.3 mM and 6.7 mM for the binding and unbinding runs,

respectively. The resulting values for kon are 61 mM-1s�1 and 63 mM-1s�1

for the binding and unbinding runs, respectively.
Free energy profile

Cut-based (53,54) and conventional, histogram-based free energy profiles

were computed using Fep1d (55).
RESULTS AND DISCUSSION

We performed 10 simulations starting from the peptide
placed randomly in the simulation box. These 10 simula-
tions (called binding runs in the following) were
completely agnostic of the binding site, and no biasing
force or restraint was used. In addition 10 independent
runs were started from the bound state using the crystal
structure of the complex (PDB code 3LNY (49)) as
starting conformation and different random seeds for the

http://campari.sourceforge.net
http://campari.sourceforge.net
http://campari.sourceforge.net
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initial assignment of the velocities. Total simulation time
amounted to 57 ms.
Association via electrostatic steering and
nonnative salt bridges

We observed fast association of the peptide and the PDZ
domain in all of the binding runs. The intermolecular distance
dropped below 2.5 Å within 5 ns on average. The residues
most involved in complex formation are Val22, Thr23,
Gly24, His71, Val75, and Arg79 located along the binding
site, Asn27, Thr28, Val30, Arg31, Tyr36, and Lys38 in the
b2-b3 loop and on strand b3, as well as Lys54, Gly55, and
Lys72 (Figs. 1 B and S1 and Materials and Methods). On
the other hand, contact frequencies are low for the carboxylate
binding loop, for helix a1, which contains two negatively
charged residues, and the b-sheet formed by the b1, b6, b4,
and b5 strands, which is located on the other side of the
domain with respect to the binding site. The electrostatic po-
tential on this surface of initial association is positively
charged (Fig. 1 C), and diffusion of the peptide, which bears
two negative charges, to the vicinity of the binding site is thus
mainly driven by electrostatic steering.

Various salt bridges are formed in the encounter complex,
which features multiple relative orientations of the peptide
and PDZ domain. In the fifth binding run, for example,
the carboxylate group of Val0 (peptide residues are
numbered from �5 to 0) forms salt bridges with Arg79,
Lys13, and Lys72 before committing to the final binding
pose (Fig. 3 and Movie S1). The detailed sequence of events
and the roles played by the individual charged residues are
FIGURE 3 Salt bridges stabilize the encounter complex. (A) Nonspecific sal

(Movie S1). A representative conformation of the PDZ domain in the major bin

ylate-binding loop and the side chain of Ser17. A sphere is drawn every 1 ns at t

and colored according to time, as indicated in (B). The side chains of selected ba

drawn every 150 ns. The illustration was rendered with VMD (85). (B) Analysis

PDZ domain (peptide: PDZ), the RMSD of the peptide Ca atoms after alignment

distances between the carbonyl oxygen of Ile20 and the NH group of Val0, bet

Gly24 and the carbonyl oxygen of Gln-4 below 3.5 Å), the solvent accessible

atom pairs are plotted as median values in a window of 1 ns. Corresponding plo

in color, go online.
different in the other simulation runs (Figs. S2–S21), illus-
trating the heterogeneity of the encounter complex and the
lack of specific interactions (10,11,56–58). However, in all
of the binding runs salt bridges are dynamically formed in
the encounter complex.

The solvent accessible surface area of the peptide is larger
in the encounter complex than in the stereospecific complex
(Figs. 3 and S2–S21). This indicates that the binding inter-
face of the encounter complex is not fully desolvated and
that specific intermolecular hydrogen bonds or hydrophobic
interactions are of lesser importance (10,56,57).
Final binding in antiparallel b-sheet arrangement

We have recently developed a method for the visualization
of long MD trajectories (46,47). The main output of the
method is the SAPPHIRE plot, which offers an intuitive
illustration of the states and sequence of events encountered
during the simulation (see Materials and Methods). Previ-
ously, we used SAPPHIRE plots to analyze protein folding
and conformational changes in the native state of a protein
(47) as well as multiple conformations of a loop of the
prion protein (59). Here, we apply the method to a binding
process.

The SAPPHIRE plot of the combined binding and unbind-
ing runs (Fig. 2) shows that the major binding mode is stabi-
lized by the canonical burial of the Val0 side chain (formed
contact with side chain of Leu78 in the binding pocket).
In addition, the Val0 carboxylate group interacts with the
carboxylate-binding loop (Fig. 3 A) and intermolecular
backbone hydrogen bonds are formed between the carbonyl
t bridges in the encounter complex during binding in the fifth binding run

ding mode is shown along with the backbone amide groups of the carbox-

he positon of the carbon atom of the Val0 carboxylate group during binding

sic residues involved in salt bridges with the carboxylate group of Val0 are

of the fifth binding run. The minimal distance between the peptide and the

on the PDZ domain, the number of backbone hydrogen bonds formed (i.e.,

ween both polar groups of Val22 and Ser-2, and between the NH group of

surface area of the peptide (SASApeptide), and distances between selected

ts for the other simulation runs are given in Figs. S2–S21. To see this figure

Biophysical Journal 108(9) 2362–2370



FIGURE 4 Free energy profile along a geometric order parameter. Histo-

gram-based (black) and cut-based (red) (53,54) free energy profiles are

shown as a function of the distance between the Cb atom of Val0 and the

Cg atom of Leu78, which reports on burial of the Val0 side chain. Barriers

separating the stereospecific complex (sc), the encounter complex, and fully

unbound conformations are indicated by gray, dashed lines. Note that this

simple projection introduces overlap and hides crucial information, which,

in contrast, is fully resolved by the SAPPHIRE plot (Fig. 2), e.g., the pres-

ence of minor binding modes. To see this figure in color, go online.
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oxygen of Ile20 and the NH group of Val0, between both
polar groups of Val22 and Ser-2, and between the NH group
of Gly24 and the carbonyl oxygen of Gln-4 (Fig. 2). Of
importance, the most populated binding mode is essentially
identical to the crystal structure. The barrier at a value of
the normalized progress index of ~0.15 is due to reorientation
of the Glu-5 side chain, which can either point toward the
solvent or form a salt bridge with Lys72. Regarding the crys-
tal structure, note that the atoms of theGlu-5 residue had very
high B-factors and the side chain did not show any electron
density (49). Furthermore, the peptide used by Zhang et al.
is slightly longer than the one we simulated and has an addi-
tional charged residue (Glu-7), which is likely to affect, at
least in part, the orientation of the N-terminal segment of
the peptide in the bound conformation.

A minor binding mode is located between normalized
progress index values of ~0.36 and ~0.48 (Fig. 2). In this
binding mode the C-terminal part of the peptide is bound
as in the crystal structure, whereas the N-terminal segment
protrudes into the solvent. Only the two backbone hydrogen
bonds toward the C-terminus of the peptide (between the
carbonyl oxygen of Ile20 and the NH group of Val0 and
between the NH group of Val22 and the carbonyl oxygen
of Ser-2) are formed, in agreement with recent experimental
results obtained by amide-to-ester mutations (57). Another
alternative binding mode, which is short-lived and was
repeatedly sampled, is located between normalized progress
index values of ~0.52 and ~0.55. This binding mode features
burial of the Val0 side chain (as in the crystal structure),
whereas the Val0 carboxylate group forms a salt bridge
with Arg79 instead of interacting with the carboxylate-bind-
ing loop and no intermolecular backbone hydrogen bonds
are present. Finally, snapshots representing the encounter
complex are found between normalized progress index
values of ~0.55 and ~0.9. Fully unbound conformations
accumulate at the end of the progress index.

The stereospecific complex (major or minor binding
modes) was reached in five out of the 10 binding runs
(Figs. 2, 3, and S2–S11). Additionally, the peptide rebound
in three of the six unbinding runs in which full dissociation
was observed (Figs. S12–S21 and Movie S2). Our estimate
for kon based on these eight binding events is ~60 mM-1s�1

(see Materials and Methods). We note that the TIP3P water
model used here shows a self-diffusion constant higher by a
factor of 2–3 than the experimentally measured value (60),
which might influence kon. Experimental values for kon
collected at lower temperatures and similar or higher ionic
strength range from 2.9 to 36 mM-1s�1 for the same PDZ
domain or its mouse ortholog PTP-BL PDZ2 and the pep-
tide ENEQVSAVor dansyl-EQVSAV (49,57,61–63).

The dissociation of the encounter complex is frequent on
the timescale of binding in our simulations as the average
lifetime of the encounter complex is ~200 ns (see distance
between peptide and PDZ domain in Figs. S2–S21). The
encounter complex is thus located before the rate-limiting
Biophysical Journal 108(9) 2362–2370
step (2,56,57). This observation is validated by the free en-
ergy profile along the distance between the Val0 side chain
and the hydrophobic pocket of the PDZ domain (Fig. 4),
which confirms that the main barrier accounts for the burial
of the Val0 side chain. Comparing Fig. 3 with the corre-
sponding figures for the other simulation runs (Figs. S2–
S21) shows that the stereospecific complex can be reached
from the encounter complex via various pathways. The
burial of the Val0 side chain takes place before the forma-
tion of the backbone hydrogen bonds or almost simulta-
neously (e.g., in the binding run 8, Fig. S19). Thus, the
sequence of events for binding starts with the formation of
nonnative salt bridges in the encounter complex (which
does not always lead to full binding) followed by burial
of the Val0 side chain, and formation of the backbone
hydrogen bonds between residues Val0/Ser-2 and the PDZ
b2 strand in an antiparallel b-sheet arrangement.
Inverse sequence of events during unbinding

It is interesting to analyze the unbinding process and
compare with binding. Peptide dissociation starts by the
rupture of the backbone hydrogen bonds, which takes place
before the Val0 side chain exits from the hydrophobic
pocket of the PDZ domain. Thus, the initial events of un-
binding are the reverse of the final events of binding.
Furthermore, the peptide does not immediately diffuse
away from the PDZ domain after the native interactions of
the stereospecific complex break apart. Instead, the peptide
remains in contact with the PDZ domain for several hundred
nanoseconds (Movie S2 and Figs. S4, S5, S7–S9, and S21).
Quantitatively, the residence time in the encounter complex
is 6505 900 ns during unbinding and 2005 300 ns during
binding. Of importance, the same nonnative salt bridges pro-
vide kinetic stabilization to the encounter complex during



FIGURE 5 Salt bridges in the encounter complex during binding and un-

binding. The trajectory segments that correspond to the encounter complex

during binding and unbinding were extracted based on Figs. S2–S21, and

salt bridges were considered to be formed if the Nz atom (for the PDZ ly-

sines) or the Cd atom (for the PDZ arginines) was within 6 Å of the carbox-

ylate carbon of Val0 or Glu-5, respectively. To see this figure in color, go

online.
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both peptide association and dissociation (Fig. 5). Thus, the
sequence of events for full dissociation is the reverse of
binding.
CONCLUSIONS

We have used unbiased MD simulations to analyze the bind-
ing of the C-terminal hexapeptide segment of a natural
ligand to the second PDZ domain of PTP1E. The general
view of the binding process is schematically depicted in
Fig. 6 and a representative binding event is shown in Movie
S1. Initial association is driven by the long-range electro-
static interactions between the peptide and the PDZ domain
(Fig. 1 C). In the resulting encounter complex the peptide is
weakly bound in the vicinity of the binding site (Figs. 1 B
and 3). The complex is maintained by nonspecific electro-
static interactions, which allows the peptide to sample mul-
tiple orientations (Fig. 3). After the rate-limiting step the
side chain of Val0 is buried in a hydrophobic pocket (Figs.
2 and 3). At this point, up to four backbone hydrogen bonds
between the peptide and b2 can form depending on whether
specific complex. (Insets) The ribbon illustrations focus on the binding site, i

ylate-binding loop, b2-b3 strands and loop, and helix a2 of the PDZ domain

Glu-5 side (red), Val0 side chain (black), and the side chains of basic residues of

illustrations were prepared with VMD (85). To see this figure in color, go onlin
the major binding mode is reached directly or via distinct
minor binding modes (Fig. 2). The comparison of the
sequence of events for binding and unbinding shows that
the two processes are one the inverse of the other.

To further investigate the influence of the encounter com-
plex on the rate constant for binding, we suggest to measure
experimentally the salt dependence of the binding rate, e.g.,
by the Förster resonance energy transfer technique. These
measurements have already been reported for PTP-BL
PDZ2 and a dansylated peptide without any charged side
chains (64). Whereas koff was independent of the ionic
strength, kon decreased with increasing ionic strength, which
was attributed to the negative charge of the C-terminal
carboxylate group. A stronger influence on kon is predicted,
on the basis of our MD simulation results, for a similar pep-
tide with one or two negatively charged side chains. On the
other hand, electrostatic steering has been ruled out for
binding of a peptide with no net charge (dansyl-KQTSV)
to PDZ3 of postsynaptic density protein 95 (which has glu-
tamic acids at the positions of Arg31 and Lys72) (65).

Themechanismof initial association guided by nonspecific
electrostatic steering is likely to be valid for other (small, sin-
gle-domain) peptide-binding proteins (4,7,9,66,67). As an
example, the binding of histone tails to bromodomains is
most probably driven by the negative electrostatic potential
on the surface surrounding the acetylated lysine binding
site, whereas the final stereospecific complex is stabilized
by the hydrogen bond between the acetyl carbonyl and the
side chain of the evolutionary conserved Asn (68). Other ex-
amples include the binding of phosphorylated peptides to SH2
domains (12) as well as intrinsically disordered proteins (69),
which tend to contain more charged residues than globular
proteins (70). Regarding the coupled binding and folding of
intrinsically disordered proteins (71), experimental and theo-
retical (72,73) studies have highlighted nonnative salt bridges
in the encounter complex (74), enhanced on-rates due to elec-
trostatic interactions (75–77), nonnative steering (78), and
late formation of native contacts (79).
FIGURE 6 Schematic free energy profile of the

binding process. After association accelerated by

electrostatic steering a weak encounter complex is

formed, which is stabilized by nonspecific intermo-

lecular salt bridges. In contrast, the stereospecific

complex features burial of the Val0 side chain and

multiple binding modes differing among each other

only in the orientation of the N-terminal part of the

peptide. In this qualitative illustration, relative bar-

rier heights roughly reflect the kinetics observed in

the MD simulations, i.e., fast formation, reconfigu-

ration and dissociation of the encounter complex,

interconversions among major and minor binding

modes on an intermediate timescale, and slow

transitions between encounter complex and stereo-

.e., only the following structural elements are shown for clarity: Carbox-

(gray), backbone of the peptide, C-terminal carboxylate group, and the

the PDZ domain involved in salt bridges with the peptide (cyan). The ribbon

e.

Biophysical Journal 108(9) 2362–2370
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Finally, it is interesting to compare protein folding
with peptide binding as they differ in the number of
molecules involved but they are both governed by noncova-
lent interactions. Protein folding is driven by progressive
formation of native interactions, which are in general
more favorable than nonnative contacts (80–84). In contrast,
our simulation results provide evidence that the binding of a
charged peptide to a protein surface with opposite charge
can be steered by long-range polar interactions that are
not present in the final bound state.
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