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Base Model

In this section the training of the base model according to Tysinger et al.5! is described. Be-
cause their weights are not in the public domain, they were generated ab initio. A schematic
overview of the training can be seen in Figure S1.

From the ChEMBL®? data set (version 28) all entries whose "molecule type’ was small
molecule’ and the entry contained an 1C5q, ECsq or K; value were extracted. All salts were
removed by checking if the SMILES string of the entry contains a dot. This left a total of
940 640 entries. The SMILES strings of these entries were transformed such that they are
canonical, do not contain any stereochemical information, and all hydrogen atoms are treated
implicit. These transformations were done with RDKit.%® After removing all SMILES that
could not be converted to SELFIES,5* the SMILES were fragmented and the fragments were
paired with mmpdb.5® This resulted in 29 596 204 pairs after duplicate pairs were removed.

The SMIRK transformation®® between the molecules of each pair was recorded and the
frequency of each SMIRK was determined. To capture relevant SMIRKs, all pairs that had a
SMIRK that occurred less than 50 times in the whole data set were excluded. Additionally, to
prevent that a few most frequent SMIRKS (i.e., methylation, fluorination, and chlorination)
dominate the data set, only 50 pairs were sampled randomly for each SMIRK. This resulted
in 11738 SMIRKSs with 50 pairs each for a total of 586 900 pairs.

A train, validation, test split of the pairs was done using the following chronological
splits: If the ChEMBL entry date of both molecules in the pair was before 2013, they were
added to the training set. If the entry date of both molecules was between 2013 and 2015
including, they were added to the validation set. All remaining pairs were added to the test
set. For each pair the corresponding pair with flipped order of molecules was also added to
the train, validation, or test set respectively. This resulted in 596 850 pairs in the training
set, 304 346 pairs in the validation set and 272604 pairs in the test set. All SMILES were
converted to SELFIES before being used for training, validation, or testing.

For training, the default model architecture from OpenNMTS” (opennmt-py, version

S-2



extract entries where
molecule type = "small molecule",
entry contains 1Csg, ECsg or K;,
and molecule is not a salt

ChEMBL database
Version 28

940'640 entries

y

remove SMILES that can not be
converted to SELFIES

940'640 entries

remove stereochemical information,
treat all hydrogen atoms implicit
and canonicalize SMILES

fragment SMILES and
pair fragments with mmpdb

57'596'204 pairs remove duplicate pairs

for each SMIRK that appears at least|
50 times, sample 50 random pairs

586'900 pairs

29'696'204 pairs

for each pair add its reverse
transformation

count SMIRKS

first appearance
of both molecules in pair
<2013

training set

yes 596'850 pairs

generate vocabulary files

no

2013 <
first appearance
of both molecules in pair
<2015

validation set

yes 304'346 pairs

train default openNMT-py network

for 30 epochs,

validate after each epoch

no

test set
272'604 pairs

inference on trained network

Figure S1: Schematic overview of the training procedure for the base sequence-to-sequence

transformer model.



2.3.0) was used with its default parameters. Vocabulary files, which contain all the different
SELFIES tokens that appear in the training set, were also generated with OpenNMT. The
model was trained for 30 epochs with a batch size of 128 and a learning rate of 1.0. After

each epoch the model weights were saved and the validation set was used for inference.
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Figure S2: Comparison of the base transformer model®! (left column) and our re-training
(right column). In (a) the training and validation perplexity of the model is shown. In (b)
the difference between the perplexity of the validation and the training set is visualized,
together with the difference in the perplexity of the validation set compared with itself from
the previous epoch. (c) shows the total number of predicted molecules, and how many of
these new predictions have a new scaffold compared to the molecule used as an input for this
prediction. The number of molecules for which only an R-group changed compared to the
corresponding input molecule is shown in (d). In (e) the number of unique scaffolds and the
number of new scaffolds in the predictions are shown. The vertical gray lines mark epoch 10
which was used as the starting point for the fine-tuning.

In Figure S2 multiple metrics of the model during the training progress are shown. Com-

paring the original model from Tysinger et al. to our retraining, we observe that the overall
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trends over the epochs are very similar. As expected the perplexity of both the training and
the validation set decreases over the epochs. In the first 10 epochs the validation perplexity
is much more erratic than in the later epochs. In both models the validation perplexity
gets close to the training perplexity towards the higher epoch numbers. The scaffold change
count is stable for the first epochs and then falls drastically between epoch 8 and 15 for
both models. The difference between the scaffold change count for the earlier epochs com-
pared with the later epochs is a bit higher for the model of Tysinger et al. After epoch 15
the scaffold change count is again more stable with a small downwards trend after epoch
22. At the same time as the scaffold change count drops, the R-group change count rises
sharply. This is to be expected as each prediction is classified into either scaffold change,
R-group change or no change. As the model learns, less drastic changes are made to the
input molecules. The scaffold change count falls and the R-group change count rises. In our
model the R-group change count does not quite reach the same height as in the model of
Tysinger et al., mostly because the scaffold change count does not drop as low in our model
as for the model of Tysinger et al. Lastly, the number of unique and new scaffolds is close
to zero for the early epochs because the model repeats itself and predicts almost the same
molecule no matter the input molecule. As the model learns to adapt to the input molecule
the number of unique and new scaffolds rises until a certain point, when the scaffold change
count starts to drop again. The modifications are now mostly on the R-groups and the
scaffold is hardly changed any more. This explains the small decrease in unique scaffolds, as
some of the input molecules have the same scaffold, and the bigger drop in new scaffolds as
only R-group changes do not produce a new scaffold.

In the magnitude and to a lower extent in the shape of the above discussed metrics
over the epochs there are some differences between the original model®! and our re-traning.
Overall these differences are rather small and could easily stem from the randomness in the
composition of the training set or the model weight initialization. The initial ChEMBL

database extract used was the same for both models. The data set was sampled according
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to SMIRKS as described above. This sampling led to different final training, validation, and
test sets for the two models.
Epoch 10 of our re-trained model (vertical gray line in Figure S2, right) was used as a

starting point for the fine-tuning.
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Fine-tuning for Potency
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Figure S3: Schematic overview of the fine-tuning process for potency.
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Figure S4: Robustness of the distributions of ICsq values with respect to the threshold
used for Tanimoto similarity. (Top) Distribution of the ICs5y values for all experimentally
measured molecules. (Other panels) For all unique predicted molecules that have a Tanimoto
similarity equal or bigger than the threshold to a known molecule, the 1Cs5y of the known
molecule was used for the histogram. The number of unique known molecules are 403, 385,
365 and 354 for the panels with similarity > 0.75, 0.80, 0.85, and 0.9, respectively. The bar
at IC5y = 1073M represents inactive moleculgs8
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