Supporting Information

Fragment-based Design of Selective Nanomolar Ligands of the CREBBP Bromodomain

Andrea Unzue, ${ }^{\dagger}$ Min Xu, ${ }^{\ddagger}$ Jing Dong, ${ }^{\dagger}$ Lars Wiedmer, ${ }^{\dagger}$ Dimitrios Spiliotopoulos, ${ }^{\ddagger}$ Amedeo Caflisch ${ }^{\ddagger,{ }^{*}}$ and Cristina Nevado ${ }^{\dagger, *}$

${ }^{\dagger}$ Department of Chemistry and ${ }^{\ddagger}$ Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

Table of contents

1. Fragment-based high-throughput docking S2
2. Finite-difference Poisson calculations S2
3. Synthetic methods S3
3.1 Synthesis of non-commercially available carboxylic acids ($\mathbf{3 7}, \mathbf{3 9}, \mathbf{4 4}, \mathbf{4 6}, \mathbf{4 8}, \mathbf{5 3}, \mathbf{5 4}, 57$) S3
3.2 Synthesis of non-commercially available anilines (66-72, 74, 76) S8
3.3 Amide coupling reactions S12
3.3.1 Synthesis of fumaric acid derivatives (79-82, 84) S13
3.3.2 Synthesis of benzoic acid derivatives. Scope on the acyl benzene (7, 87-93) S15
3.3.3 Synthesis of benzoic acid derivatives. Scope on the side chain (15-17, 95-98, 100) S18
3.4 Suzuki coupling reactions (101-103) S21
3.5 Methyl ester hydrolysis of the amide coupling products (1-6, 8-14, 18-24) S22
4. Bromodomain expression and purification S30
5. X-ray crystallography S30
5.1 Composite Omit Map of Ligand 6 S31
6. Thermal shift measurements S32
6.1 Phylogenetic Tree S32
6.2 Correlation between IC_{50} and Thermal Shift results S32
7. TR-FRET assays S33
8. BomoScan assays S33
9. ITC experiments S35
10. Cell culture and cytotoxicity measurements S38
11. Comparison table to known CREBBP ligands S40
12. NMR traces of selected compounds S41
12.1 Intermediate compounds S41
12.2 Final compounds S67
13. HPLC trace (for purity) of tested compounds S91
[^0]
1. Fragment-based high-throughput docking

The ALTA (anchor-based library tailoring) procedure was used for fragment-based high-throughput docking (Figure S 1). The details of the procedure are presented in the preceding paper.

Figure S1. Application of the ALTA (anchor-based library tailoring) procedure ${ }^{1-2}$ to the CREBBP bromodomain. The program DAIM automatically decomposes molecules into fragments by cutting at rotatable bonds. ${ }^{3}$ CHARMM atom types and non-bonding parameters used in SEED ${ }^{4-6}$ were generated by MATCH. ${ }^{7}$ The program for fragment docking (called SEED ${ }^{4-6}$) requires about 5 seconds per fragment on a single core of an i7 CPU at 2.8 GHz . CHARMM minimization of the fragment with rigid CREBBP took about 2 seconds per fragment.

2. Finite-difference Poisson calculations

The electrostatic contribution to the binding free energy was evaluated by numerical solution of the Poisson equation using the finite-difference method as implemented in the $P B E Q$ module ${ }^{8}$ of the program CHARMM. ${ }^{9}$ The solute/solvent dielectric discontinuity surface was delimited by the molecular surface spanned by the surface of a rolling probe of $1.4 \AA$. The dielectric constant of the solute and the solvent were set to 2.0 and 78.5 , respectively. The six conserved water molecules were considered explicitly as part of the protein, i.e., they were assigned a dielectric constant of 2.0 as for the protein because they are essentially fixed in space and do not contribute to screening. The ionic strength was set to zero, and the temperature was set to 300 K . The size of the initial grid was determined by considering a layer of at least $20 \AA$ around the solute. The partial charges of the solute were distributed on the grid points by the trilinear interpolation algorithm. First the linearized Poisson equation was solved on a grid of $1.0 \AA$ spacing, which was followed by a focused calculation with a grid encompassing all of the solute and a grid spacing of $0.3 \AA$. For both calculations an iterative procedure (successive over-relaxation) was used. All calculations were carried out independently on the crystal structure (PDB code 4 TQN) and the minimized crystal structure. The latter was obtained
by conjugate gradient minimization with the CHARMM program (version 38b1), and the CHARMM param36 force field for CREBBP and the CHARMM general force field (which is compatible with CHARMM param36) for compound 6.

3. Synthetic methods

All reactions, unless otherwise stated, were carried out under inert gas atmosphere using standard Schlenk-techniques. All reagents were used as received unless otherwise noted. Solvents were purchased in the best quality available, degassed by purging thoroughly with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Reactions were monitored by thin layer chromatography (TLC) using Merck TLC silica gel $60 \mathrm{~F}_{254}$. Flash column chromatography was performed over silica gel (230-400 mesh). NMR spectra were recorded on AV 300, AV2 400 or AV2 500 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra are calibrated to the residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t , quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). Melting points were determined on a Mettler Toledo MP70 melting point instrument. High-resolution electrospray ionization mass spectrometry was performed on a Finnigan MAT 900 (Thermo Finnigan, San Jose, CA, USA) double-focusing magnetic sector mass spectrometer. Ten spectra were acquired. A mass accuracy $\leq 2 \mathrm{ppm}$ was obtained in the peak matching acquisition mode by using a solution containing $2 \mu \mathrm{~L}$ PEG200, $2 \mu \mathrm{~L}$ PPG450, and 1.5 mg NaOAc (all obtained from Sigma-Aldrich, Buchs, Switzerland) dissolved in 100 mL MeOH (HPLC Supra grade, Scharlau, E-Barcelona) as internal standard. The purity of all tested compounds was determined by HPLC on a Waters Acquity UPLC (Waters, Milford, MA) Top spectrometer using an Acquity BEH C18 HPLC column ($1.7 \mu \mathrm{~m}, 1 \times 50 \mathrm{~mm}$, Waters) with a mixture of $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ $\mathrm{HCOOH}(\mathrm{A})$ and $\mathrm{CH}_{3} \mathrm{CN}+0.1 \% \mathrm{HCOOH}(\mathrm{B})$ solvent $(0.1 \mathrm{~mL}$ flow rate, linear gradient from 5% to 98% B within 4 min followed by flushing with 98% B for 1 min). Unless otherwise stated, all compounds showed $\geq 95 \%$ purity.

The following compounds were prepared according to previously reported procedures: 30, ${ }^{10} \mathbf{3 1},{ }^{11} \mathbf{3 3}$ $,{ }^{12} \mathbf{3 8},{ }^{13} \mathbf{3 9},{ }^{14} \mathbf{4 0},{ }^{14} \mathbf{4 2},{ }^{15} \mathbf{4 4},{ }^{16} \mathbf{4 6},{ }^{17} \mathbf{5 0}{ }^{18}$ and 51. ${ }^{19}$

3.1 Synthesis of non-commercially available carboxylic acids (31-51)

28

29

30

31
racemic
racemic

Dimethyl cyclopropane-trans-1,2-dicarboxylate (30) ${ }^{10}$

Colourless oil; Yield: 29%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70(\mathrm{~s}, 6 \mathrm{H}), 2.22-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,52.1$, 22.2, 15.3; IR (neat): $\tilde{v}=2955,1724,1437,1399,1332,1270,1197,1169,1026,904,839,753,661$, 444, 419, $407 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}{ }^{+}, 181.1$; found, 180.9.

2-(Methoxycarbonyl)cyclopropane-1-carboxylic acid (31) ${ }^{11}$

 $\begin{array}{ll} & \text { Colourless oil; Yield: } 40 \% ;{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.72(\mathrm{~s}, 3 \mathrm{H}), 2.27- \\ \mathrm{MeO}_{2} \mathrm{C}\end{array}{ }^{., \mathrm{CO}_{2} \mathrm{H}} \begin{aligned} & 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{tdd}, J=9.9,6.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\end{aligned}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.5,171.8,52.3,22.7,22.0,15.8$; IR (neat): $\tilde{v}=2958,1704,1438,1309$, 1176, 913, 743, $415 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{4}^{-},[\mathrm{M}-\mathrm{H}]^{-}, 143.0$; found, 142.9.

3-(1H-Tetrazol-1-yl)benzoic acid (33) ${ }^{12}$

White solid; Yield: 95%; mp 174-176 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=$ $13.48(\mathrm{br}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=166.1$, $142.4,134.0,132.7,130.6,130.2,125.2,121.6$; IR (neat): $\tilde{v}=3454,3397,3137,2898,2788,2621$, 2518, 1704, 1636, 1592, 1500, 1479, 1453, 1289, 1277, 1217, 1195, 1103, 1063, 900, 816, 758, 707 $\mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}), m / z:$ calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{-},[\mathrm{M}-\mathrm{H}]^{-}, 189.0$; found, 188.8.

3 -(N-Phenylsulfamoyl)benzoic acid (38) ${ }^{13}$

1207, 1173, 1159, 1135, 1075, 1025, 928, 899, 854, 823, 749, $735 \mathrm{~cm}^{-1}$; MS (ESI), m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S}^{-},[\mathrm{M}-\mathrm{H}]^{-}, 276.0$; found, 275.9.

Methyl 3-(phenylsulfonamido)benzoate (39) ${ }^{14}$

White solid; Yield: 86%; mp 161-163 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $=10.55(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=165.6,139.2,138.2,133.1,130.5,129.8,129.4,126.6$, 124.7, 124.4, 120.3, 52.3; IR (neat): $\tilde{v}=3412,3227,3070,1701,1605,1591,1474,1446,1438,1401$, 1337, 1296, 1216, 1175, 1156, 1122, 1114, 1088, 1000, 984, 948, 901, 853, 752, $714 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NNaO}_{4} \mathrm{~S}^{+}, 314.1$; found, 314.0.

3-(Phenylsulfonamido)benzoic acid (40) ${ }^{14}$

Acid 40 was prepared using the reported procedure and used without further purification. The presence of the acid was confirmed by IR and MS. IR (neat): \tilde{v} $=3250,3064,2963,2825,1682,1587,1447,1424,1405,1333,1297,1263$, $1158,1089,948,906,882,823,762,749,722 \mathrm{~cm}^{-1}$; MS (ESI), $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S}^{-},[\mathrm{M}-\mathrm{H}]^{-}$, 276.0; found, 276.0.

3-Bromo-5-(methoxycarbonyl)benzoic acid (42) ${ }^{15}$

 1147, 905, 797, 754, 727, $712 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrO}_{4}^{-},[\mathrm{M}-\mathrm{H}]^{-}, 256.9$; found, 256.8.

Dimethyl 5-(hydroxymethyl)isophthalate (44) ${ }^{16}$

White solid; Yield: 47%; mp 106-108 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.60(\mathrm{~s}, 1 \mathrm{H}), 8.31-8.15(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.2,141.9,132.0,130.9,129.8,64.2,52.4$; IR (neat): $\tilde{v}=$ $3490,2954,1719,1603,1437,1247,1183,1107,1002,969,921,888,788,749,719 \mathrm{~cm}^{-1} ;$ MS (ESI), $m / z:$ calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{5}{ }^{+}, 247.1$; found, 246.9.

Dimethyl 5-(methoxymethyl)isophthalate (45)

To a solution of dimethyl 5-(hydroxymethyl)isophthalate (44, $150 \mathrm{mg}, 0.669$ $\mathrm{mmol})$ in DMF $(1.50 \mathrm{~mL}) \mathrm{NaH}(53.5 \mathrm{mg}, 1.34 \mathrm{mmol})$ was added and stirred at $25^{\circ} \mathrm{C}$ for 30 minutes. Methyl iodide $(83.3 \mu \mathrm{~L}, 1.34 \mathrm{mmol})$ was added and the reaction mixture was stirred for 3 hours at $25^{\circ} \mathrm{C}$. The reaction was quenched by addition of 1 MHCl solution and extracted with EtOAc three times. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was then purified by flash column chromatography (hexane: EtOAc, 3:1) affording the desired product in pure form as a white solid ($133 \mathrm{mg}, 0.558 \mathrm{mmol}, 83 \%$ yield). $\mathrm{mp} 83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.60$ $(\mathrm{s}, 1 \mathrm{H}), 8.28-8.13(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $166.2,139.4,132.8130 .8,130.0,73.6,58.5,52.4$; IR (neat): $\tilde{v}=3490,2954,1719,1603,1437,1247$, $1183,1107,1002,969,921,888,788,749,719 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}), m / z:$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{5}{ }^{+}, 261.1$; found, 261.0.

Dimethyl 5-((tetrahydro-2H-pyran-2-yl)methyl)isophthalate (46) ${ }^{17}$

White solid; Yield: $87 \% ; \operatorname{mp} 45-48{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.59$ $(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.19(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=12.4,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.51(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $166.2,139.5,132.9,130.7,129.8,98.2,67.9,62.2,52.3,30.4,25.4,19.2$; IR (neat): $\tilde{v}=2952,2927$,

2882, 2846, 1719, 1603, 1453, 1434, 1331, 1318, 1242, 1214, 1203, 1108, 1055, 1015, 965, 911, 869, 811, 751, 720, $712 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}_{6}{ }^{+}, 331.1$; found, 331.1.

3-(Methoxycarbonyl)-5-(methoxymethyl)benzoic acid (47) ${ }^{20}$

Acid 47 was prepared using the reported procedure and used without further purification. The presence of the acid was confirmed by IR and MS. IR (neat): \tilde{v} $=2918,2861,2824,2626,1694,1605,1458,1440,1417,1314,1263,1209$, 1115, 1103, 1003, 968, 922, 751, $704 \mathrm{~cm}^{-1}$; MS (ESI), $m / z:$ calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{5}{ }^{-}$, [M-H] ${ }^{-}$, 223.1; found, 222.9.

3-(Methoxycarbonyl)-5-(((tetrahydro-2H-pyran-2-yl)oxy)methyl)benzoic acid (48)

To a solution of dimethyl 5-((tetrahydro-2H-pyran-2-yl)methyl)isophthalate (46, $150 \mathrm{mg}, 0.486 \mathrm{mmol}) 1 \mathrm{M} \mathrm{NaOH}$ solution $(0.486 \mathrm{~mL}, 0.486 \mathrm{mmol})$ was added and stirred at $25{ }^{\circ} \mathrm{C}$ for 12 hours. The pH of the reaction mixture was then adjusted to $3-4$ by adding 10% citric acid solution and extracted with EtOAc three times and brine. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was then purified by flash column chromatography ($5 \% \mathrm{MeOH}$ in DCM) affording the desired product in pure form as a white solid ($102 \mathrm{mg}, 0.347 \mathrm{mmol}, 72 \%$) $\mathrm{mp} 87-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.92(\mathrm{br}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.49(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.7$, $166.1,139.7,133.7,133.4,130.9,130.5,130.0,98.2,67.9,62.2,52.4,30.4,25.3,19.2$; IR (neat): $\tilde{v}=$ 2943, 2873, 1727, 1687, 1606, 1458, 1436, 1421, 1354, 1310, 1252, 1202, 1121, 1072, 1034, 1017, $975,942,912,869,814,752,703 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{6}{ }^{+}, 317.0996$; found, 317.0994.

a) $\mathrm{EtI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 88 \%$
b) 5 M NaOH , dioxane, $\mathrm{H}_{2} \mathrm{O}$ $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 77 \%$

Methyl 5-acetyl-2ethoxybenzoate (50) ${ }^{18}$

White solid; Yield: 88%; mp $50-53{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.38(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.1,166.0,162.0,133.6,132.6,129.4,120.1,112.6,64.9,52.1$, 26.3, 14.5; IR (neat): $\tilde{v}=2986,2947,1697,1676,1597,1496,1468,1439,1352,1266$,

1249, 1233, 1164, 1110, 1101, 1074, 1036, 958, 929, 859, 841, 816, 786, $718 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}), m / z:$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{4}{ }^{+}, 245.1$; found, 244.9 .

5-Acetyl-2-ethoxybenzoic acid (51) ${ }^{19}$

Pale yellow solid; Yield: 77%; mp $118-121{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=8.39$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $198.5,169.0,163.3,135.1,133.4,130.6,121.9,114.0,66.2,26.4,14.8 ;$ IR (neat): $\tilde{v}=$ $2989,2938,2810,2615,1681,1666,1598,1497,1403,1354,1293,1263,1224,1167$, 1110, 1076, 1027, 968, $928,806 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NaO}_{4}^{+}, 230.1$; found, 230.9.

3.2 Synthesis of non-commercially available anilines (60-66)

General procedure for ether synthesis (53-56)

To a solution of 1-(4-hydroxy-3-nitrophenyl)ethan-1-one (52, 1.0 eq) in DMF (0.30 M), the alkyl iodide (1.2 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.0 \mathrm{eq})$ were added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and it was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography ($2: 1$, hexane:EtOAc) affording the desired products in pure form. In the case of alkyl chlorides (products 54 and 55), the alkyl chloride (2.0 eq) was first stirred in DMF $(0.30 \mathrm{M})$ in the presence of $\mathrm{NaI}(2.0 \mathrm{eq})$ for 30 min . The phenol (1.0 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 eq) were then added and the same procedure as the one described above was followed.

1-(3-Nitro-4-propoxyphenyl)ethan-1-one (53)

White solid; Yield: 84%; mp $57-60{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.40(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.17-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta=194.8,155.8,139.5,133.8,129.3,126.1,114.0,71.6,26.3,22.2,10.3 ;$ IR (neat) $: \tilde{v}=$

2981, 2972, 2927, 2884, 1666, 1608, 1524, 1499, 1462, 1399, 1356, 1282, 1258, 1156, 1077, 1056, 965, 907, 899, 828, $774 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{+}, 224.0917$; found, 224.0918.

1-(4-Isobutoxy-3-nitrophenyl)ethan-1-one (54)

Pale yellow solid; Yield: 90%; mp 61-63 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.41$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dp}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=194.8,155.9,139.3,133.8,129.2,126.2$, 113.9, 76.1, 28.2, 26.3, 19.0; IR (neat): $\tilde{v}=2966,2876,1677,1609,1568,1531,1470,1419,1355$, 1273, 1235, 1166, 1066, 1004, 988, 976, 957, 910, 824, 815, 762, $739 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}, 238.1074$; found, 238.1077 .

1-(4-(Cyclopropylmethoxy)-3-nitrophenyl)ethan-1-one (55)

Yellow solid; Yield: 73%; mp $74-77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.40(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.45-0.39(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=194.8,155.7,139.6,133.7,129.4,126.1$, $114.3,74.6,26.3,9.8,3.4$; IR (neat): $\tilde{v}=3275,3092,3011,1673,1607,1566,1527,1497,1412,1360$, 1271, 1171, 1066, 1024, 977, 911, 886, 835, 826, $809 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{+}$, 236.0917; found, 236.0918.

1-(4-(Benzyloxy)-3-nitrophenyl)ethan-1-one (56)

Pale yellow solid; Yield: 90%; mp 132-135 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 194.7, 155.1, 139.7, 134.7, 133.7, 129.8, 128.8, 128.5, 126.9, 126.1, 114.6, 71.4, 26.3; IR (neat): $\tilde{v}=2923,1679,1611,1569,1531,1493,1417,1346,1267,1237,1178,1066,1018$, 979, 911, 890, 828, $732 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{4}{ }^{+}, 272.0917$; found, 272.0917.

General procedure for the reduction of nitro phenyls (60-66)

To a mixture of nitrophenyl (1 eq) in $\mathrm{EtOH}(0.3 \mathrm{M}) \mathrm{SnCl}_{2 .} 2 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{eq})$ was added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for $2-5 \mathrm{~h}$, cooled, and concentrated under reduced pressure. The pH was basified to pH 5 by the addition of a 5 M NaOH solution. The resulting precipitate was filtered off and washed with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography (hex: EtOAc, 3:1-1:1) affording the desired anilines in pure form.

1-(3-Amino-4-propoxyphenyl)ethan-1-one (60)

Brown solid; Yield: 40%; mp 53-55 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=197.2,150.9,135.8$, $130.5,120.8,114.3,110.1,70.0,26.3,22.5,10.5$; IR (neat): $\tilde{v}=3485,3369,2961$, 2934, 2877, 1671, 1615, 1580, 1513, 1474, 1439, 1350, 1295, 1253, 1219, 1148, 1063, 1039, 1013, 977, 916, 886, 787, $770 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$, 194.1176; found, 194.1179.

1-(3-Amino-4-isobutoxyphenyl)ethan-1-one (61)

Brown-red oil; Yield: $53 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.34(\mathrm{~m}, 3 \mathrm{H})$, $6.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{br}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.15$ $(\mathrm{dp}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=197.3,150.7,136.2,130.5,120.4,113.9,110.0,74.7,28.2,26.2,19.2 ;$ IR (neat): \tilde{v} $=3472,3363,2959,2928,2873,1667,1613,1583,1513,1470,1440,1359,1296,1210,1153,1064$, 1022, 880, $795 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$, 208.1332; found, 208.1334 .

1-(3-Amino-4-(cyclopropylmethoxy)phenyl)ethan-1-one (62)

Brown solid; Yield: 61%; mp $44-46{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{br}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.52$ $(\mathrm{s}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.56(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.3,150.7,136.3,130.6,120.4,114.0,110.2,73.2,26.3$, 10.2, 3.2; IR (neat): $\tilde{v}=3471,3359,3082,2995,2925,1659,1614,1582,1512,1444,1409,1351$, 1299, 1250, 1216, 1153, 1058, 1020, 1002, 979, 941, 877, 837, $794 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}, 206.1176$; found, 206.1175.

1-(3-Amino-4-(benzyloxy)phenyl)ethan-1-one (63)

Yellow solid; Yield: 53%; mp 119-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44$ $-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{br}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.2,150.3,136.4,136.3,130.9,128.7,128.3$, $127.5,120.3,114.1,110.7,70.5,26.3$; IR (neat): $\tilde{v}=3457,3355,2997,2921,1659$, $1614,1580,1510,1444,1386,1358,1301,1248,1211,1160,1065,1023,997,981,927,891,857$, $792,749,705 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}, 242.1176$; found, 242.1176.

1-(3-Amino-4-methyoxyphenyl)ethan-1-one (64)

Light yellow solid; Yield: 48%; mp $96-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40$ $(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$,
2.53 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=197.3,151.3,136.1,130.7,120.5,114.0,109.2,55.6$, 26.2; IR (neat): $\tilde{v}=3454,3370,2935,1667,1584,1514,1440,1298,1219,905,729,648,406 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NNaO}_{2}{ }^{+}, 188.1$; found, 187.9.

1-(3-Amino-4-methylphenyl)ethan-1-one (65)

Light brown solid; Yield: $79 \% ; \operatorname{mp} 77-78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{br}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.22$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.2,144.8,136.3$ 130.4, 128.0, 119.0, 113.8, 26.5, 17.5; IR (neat): $\tilde{v}=3433,3347,3229,1664,1633,1602,1567,1417,1357,1303$, 1287, 1237, 1199, 1141, 955, 856, $834 \mathrm{~cm}^{-1}$; MS (ESI), m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}^{+}, 150.1$; found, 149.9.

1-(3-Amino-4-fluorophenyl)ethan-1-one (66)

White solid; Yield: 69%; mp $65-68{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41(\mathrm{dd}, J=$ 8.7, 2.2 Hz, 1H) 7.31 (ddd, $J=8.4,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (br, 2H), $2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.0,154.5(\mathrm{~d}, J=247.7 \mathrm{~Hz}$), $134.8(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 119.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=5.3 \mathrm{~Hz})$, 115.1 (d, $J=19.7 \mathrm{~Hz}$), 26.4; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-127.87$; IR (neat): $\tilde{v}=3396,3325$, $3217,1665,1607,1589,1510,1422,1309,1282,1244,1196,1137,1099,1060,964,878,802,713$ $\mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}), m / z$: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNNaO}^{+}, 176.2$; found, 178.8.

67

68

1-(3-Amino-4-morpholinophenyl)ethan-1-one (68)

A solution of 1-(4-Bromo-3-nitrophenyl)ethanone (67, $500 \mathrm{mg}, 2.05 \mathrm{mmol})$ in isopropanol (5.00 mL) was heated at $110^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.80 \mathrm{~g}, 7.98 \mathrm{mmol})$ was then added and heated at $110^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated under reduced pressure and the pH was basified to pH 5 by the addition of a 5 M NaOH solution. The resulting precipitate was filtered off and washed with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography (hex: EtOAc, 1:1) affording the desired aniline in pure form as a brown solid ($145 \mathrm{mg}, 0.579 \mathrm{mmol}, 32 \%$ yield over two steps). mp $141-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{br}, 2 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=197.7,143.4,141.0,133.4,120.0,118.7,114.5,67.3,50.7,26.5$; IR (neat): $\tilde{v}=3380,3311,2962,2924,2824,1671,1627,1591,1566,1505,1445,1424,1370,1363$,
$1301,1288,1255,1213,1205,1106,1065,1041,966,941,920,902,861,845,821,728 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 221.1285$; found, 221.1283.

3-Amino-4-ethoxy- N-methylbenzamide (70)

To a solution of 3-amino-4-ethoxybenzoic acid ($\mathbf{6 9}, 100 \mathrm{mg}, 0.552 \mathrm{mmol}$) in DMF (1.80 mL), methylamine hydrochloride ($150 \mathrm{mg}, 2.22 \mathrm{mmol}$), $\mathrm{HOBt}(89.4 \mathrm{mg}, 0.662 \mathrm{mmol}$), EDC. $\mathrm{HCl}(1.104 \mathrm{mmol}, 212 \mathrm{mg})$ and DIPEA ($385 \mu \mathrm{~L}, 2.21 \mathrm{mmol}$) were added. The solution was stirred at $55^{\circ} \mathrm{C}$ for 12 h , it was concentrated and purified by flash column chromatography ($5 \% \mathrm{MeOH}$ in DCM) affording the desired amide as a white solid in pure form ($75.0 \mathrm{mg}, 0.384 \mathrm{mmol}, 70 \%$ yield). $\mathrm{mp} 142-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{br}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{br}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=168.2,149.0,136.3,127.3,117.0,113.6,110.4,63.9,26.7,14.8 ; \mathrm{R}$ (neat): $\tilde{v}=3461,3361$, 3282 , 2985, 2930, 1610, 1593, 1577, 1550, 1508, 1473, 1390, 1314, 1282, 1223, 1146, 1112, 1040, 886, 823, $777 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$, 195.1128; found, 195.1129.

3.3 Amide coupling reactions

General procedure A for amide formation

The desired aniline (1.0 eq) and carboxylic acid (1.2 or 1.3 eq) were dissolved in DMF (0.10 M) and EDC.HCl (1.5-2.0 eq), DIPEA (1.5 eq) and HOBt (1.5-2 eq) were added at $25^{\circ} \mathrm{C}$. In the case of $\mathbf{7}, \mathbf{1 6}$, 73, 74, 78, 90 and 91, EDC (1.5-2.0 eq) and no DIPEA was used. The reaction mixture was stirred for $12-48 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$, it was concentrated and redissolved in EtOAc. The organic phase was extracted with saturated NaHCO_{3} solution, 1 M HCl and brine. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography (using $1: 1$ hex: EtOAc, EtOAc or $2: 1 \mathrm{EtOAc}:$ hex as eluent), affording the desired amides in pure form. This method was used to obtain 7, 15-17, 73, 74, 76, 78, 87 and 89-92.

General procedure B for amide formation

To a solution of the carboxylic acid (1.0 eq) in toluene (1.0 M) thionyl chloride (2.0 eq) and one drop of DMF were added. The solution was refluxed for 3 h , concentrated and dissolved in DCM (0.50 M). The corresponding aniline (1.2 eq) was added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated and purified by flash column chromatography (hex:EtOAc,

2:1) obtaining the desired amides in pure form. This method was used to obtain intermediates 81-86 and 91.

3.3.1 Synthesis of fumaric acid derivatives

Methyl (E)-4-((5-acetyl-2-methoxyphenyl)amino)-4-oxobut-2-enoate (73)

White solid; Yield: 35%; mp 191-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=$ $9.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $6.91(\mathrm{~m}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=197.0,165.8,161.4,151.5,136.6,131.2,130.6,126.8,125.4$, $120.7,109.7,56.2,52.3,26.5$; IR (neat): $\tilde{v}=3379,2959,1718,1686,1676,1645,1591,1537,1493$, $1423,1366,1312,1298,1271,1257,1159,1130,1021,976,885,824,801,763 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{5}{ }^{+}, 278.1023$; found, 278.1022.

Methyl (E)-4-((5-acetyl-2-methylphenyl)amino)-4-oxobut-2-enoate (74)

White solid; Yield: 57%; mp 130-133 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
 $8.64(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=197.1,165.4,161.7,137.6,137.0,135.9,135.1,130.8,129.3$, $125.4,123.8,52.1,26.6,18.0$; IR (neat): $\tilde{v}=3353,2954,1715,1685,1670,1652,1605,1529,1499$, $1439,1355,1316,1274,1226,1201,1161,1139,1016,1003,985,822,795,768 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}, 262.1074$; found, 262.1072.

Methyl (E)-4-((5-acetyl-2-fluorophenyl)amino)-4-oxobut-2-enoate (75)

To a solution of mono methyl fumarate ($71,127 \mathrm{mg}, 0.980 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ in DCM (1.00 mL) oxalyl chloride $(84.1 \mu \mathrm{~L}, 0.980 \mathrm{mmol})$ and one drop of DMF were added. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and at $25^{\circ} \mathrm{C}$ for 30 min. The aniline, 1-(3-amino-4-fluorophenyl)ethan-1-one ($\mathbf{6 6}, 50.0 \mathrm{mg}, 0.327$ mmol), was slowly added at $0^{\circ} \mathrm{C}$, followed by $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.50 \mathrm{mmol})$ and DMAP $(12.0 \mathrm{mg}$, 0.0980 mmol). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h , it was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc three times. The combined organic layers were dried
over MgSO_{4} and concentrated under reduced pressure. The obtained residue was purified by flash column chromatography ($1: 1 \mathrm{hex}$: EtOAc) affording the desired amide in pure form as a white solid ($37.0 \mathrm{mg}, 0.140 \mathrm{mmol}, 43 \%$ yield). mp $176-179{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.06$ (d, $J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79$ (ddd, $J=8.5,5.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (dd, $J=10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.5$, 165.6, 161.6, 135.7, 134.1 (d, $J=3.2 \mathrm{~Hz}$), 132.1, 126.0 (d, $J=10.8 \mathrm{~Hz}$), 125.6 (d, $J=8.2 \mathrm{~Hz}$), 122.6 , 115.4, 115.2, 52.42, 26.63; IR (neat): $\tilde{v}=3354,2963,2924,1715,1686,1650,1614,1600,1540$, 1487, 1441, 1418, 1357, 1320, 1293, 1261, 1215, 1183, 1153, 1113, 974, 877, 818, $766 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FNO}_{4}{ }^{+}, 266.0823$; found, 266.0823.

Methyl (E)-4-((3-acetylphenyl)amino)-4-oxobut-2-enoate (76)

White solid; Yield: 50%; mp 177-178 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.64(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.4,166.2$, $161.8,138.4,137.6,136.9,131.2,129.6,125.0,124.7,119.2,52.5,26.7$; IR (neat): $\tilde{v}=3332,1723$, 1687, 1673, 1607, 1551, 1485, 1440, 1360, 1334, 1299, 1275, 1223, 1204, 1154, 1003, 973, 898, 878, 811, $711 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}^{+}, 248.0917$; found, 248.09144.

31

77

78

Methyl 2-((5-acetyl-2-ethoxyphenyl)carbamoyl)cyclopropane-1-carboxylate (78)

White solid; Yield: $55 \% ; \mathrm{mp} 166-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.99$ ($\mathrm{s}, 1 \mathrm{H}$), $8.05(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.0,173.0,168.4,150.5,130.4,127.2,124.6,120.4$, 110.4, 64.7, 52.2, 26.5, 25.5, 22.0, 15.5, 14.7; IR (neat): $\tilde{v}=3289,2986,2951,2925,1723,1682$, 1653, 1601, 1586, 1544, 1500, 1423, 1362, 1344, 1277, 1231, 1203, 1172, 1131, 1039, 956, 925, 875, 815, cm^{-1}; HRMS (ESI), m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{5}{ }^{+}, 328.1155$; found, 328.1152.

3.3.2 Synthesis of benzoic acid derivatives. Scope on the acyl benzene

Methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)benzoate (7)

White solid; Yield: 80%; mp 137-140 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-
 $\left.d_{6}\right): \delta=9.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ $-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.12$ (ddd, $J=7.8,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (dd, $J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) 4.24(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.0,166.1,164.1,151.1,135.1,132.8,131.5,130.8,130.4,129.2,127.7$, $127.2,124.9,120.5,110.4,64.8,52.4,26.5,14.7$; IR (neat): $\tilde{v}=3430,2979,2954,1720,1678,1590$, 1537, 1468, 1433, 1294, 1261, 1228, 1205, 1145, 1033, 988, 907, 797, $728 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}^{+}, 342.1336$; found, 342.1331.

Methyl 3-((5-acetyl-2-bromophenyl)carbamoyl)benzoate (81)

White solid; Yield: 60%; mp 133-135 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
 $=9.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{br}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.60(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.98$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.1,166.0,164.5,137.4$, $135.9,134.5,133.3,132.7,131.6,131.1,129.4,128.0,124.7,123.0,119.0,52.5,26.7$; IR (neat): $\tilde{v}=$ $3242,2923,2853,1726,1691,1649,1572,1524,1436,1414,1315,1295,1245,1213,1092,1083$, 1027, 932, 817, 732, 724, $706 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNNaO}_{4}{ }^{+}, 397.9998$; found, 397.9996.

Methyl 3-((5-acetyl-2-propoxyphenyl)carbamoyl)benzoate (82)

White solid; Yield: 40%; mp 132-135 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.18(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-$ $8.21(\mathrm{~m}, 1 \mathrm{H}), 8.15$ (ddd, $J=7.8,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (dd, $J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 197.2, 166.1, 164.1, 151.2, 135.1, 132.9, 131.7, 130.9, 130.5, $129.3,127.6,127.3,124.9,120.5,110.5,70.6,52.4,26.6,22.5,10.5$; IR (neat): $\tilde{v}=3321,2970,2923$, $1726,1681,1655,1602,1585,1537,1498,1461,1422,1361,1331,1300,1272,1202,1137,1096$, 1074, 975, 887, 805, 728, $719 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5}{ }^{+}$, 356.1493; found, 356.1493.

Methyl 3-((5-acetyl-2-isobutoxyphenyl)carbamoyl)benzoate (83)

Beige solid; Yield: 89%; mp 116-119 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-$ $8.21(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.96(\mathrm{~m}, 5 \mathrm{H}), 2.62(\mathrm{~s}$, $3 \mathrm{H}), 2.24(\mathrm{dp}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.1,166.0,164.0,151.2,135.1,132.9,131.7,130.9,130.5,129.3,127.4$, $127.3,124.9,120.3,110.5,75.2,52.4,28.3,26.6,19.2$; IR (neat): $\tilde{v}=3317,2959,1725,1678,1652$, $1601,1583,1535,1497,1468,1422,1360,1331,1301,1277,1258,1201,1140,1094,1075,1018$, 885, 809, $727 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}, 370.1649$; found, 370.1649 .

Methyl 3-((5-acetyl-2-(cyclopropylmethoxy)phenyl)carbamoyl)benzoate (84)

Pale yellow solid; Yield: 91%; mp 141-142 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz,
 $\left.\mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.78-$ $0.66(\mathrm{~m}, 2 \mathrm{H}), 0.46-0.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.0,166.0,164.0,151.2$, $135.1,132.8,131.7,130.8,130.5,129.2,127.6,127.5,124.8,120.4,110.8,74.0,52.4,26.5,10.1,3.2$; IR (neat): $\tilde{v}=3426,2923,2853,1722,1672,1587,1531,1473,1462,1432,1340,1305,1295,1267$, 1254, 1228, 1204, 1146, 1098, 1077, 1026, 990, 921, 905, 804, 729, $720 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{5}{ }^{+}, 368.1493$; found, 368.1495 .

Methyl 3-((5-acetyl-2-(benzyloxy)phenyl)carbamoyl)benzoate (85)

White solid; Yield: 74%; mp 149-152 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=9.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.26-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{ddd}, J=7.7,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37$ $(\mathrm{m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=197.0,166.0,164.1,150.9,135.5,135.0,132.8,131.5,130.9,130.8,129.1,128.9,128.6$, 127.7, 127.6, 127.3, 124.8, 120.6, 111.3, 71.2, 52.4, 26.5; IR (neat): $\tilde{v}=3303,3064,2954,2921,1732$, $1717,1681,1651,1602,1585,1536,1498,1425,1332,1282,1202,1146,1078,1024,973,885,832$, 797, 728, $719 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO}_{5}{ }^{+}, 426.1312$; found, 426.1307.

Methyl 3-((5-acetyl-2-morpholinophenyl)carbamoyl)benzoate (86)

Pale yellow solid; Yield: 95%; mp $152-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.51(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{~s}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=197.5,166.0,163.7,145.3,134.8,134.6$, $133.2,133.0,132.0,130.8,129.5,127.1,124.3,120.6,120.1,67.5,52.5,52.3,26.7$; IR (neat): $\tilde{v}=$ $3327,2958,2582,1731,1673,1579,1525,1427,1356,1292,1258,1234,1217,1109,932,918,814$, 801, $719 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}, 383.1602$; found, 383.1602.

Methyl 3-((2-ethoxy-5-(methylcarbamoyl)phenyl)carbamoyl)benzoate (87)

White solid; Yield: 66%; mp 161-163 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=167.5,166.0,164.1,149.7,135.0,132.7,131.4,130.8,129.1,127.7$, $127.1,126.9,124.7,117.1,110.7,64.6,52.4,26.7,14.6$; IR (neat): $\tilde{v}=3432,3305,2935,1723,1683$, $1655,1590,1537,1490,1467,1437,1316,1302,1260,1235,1216,1143,1113,1040,1023,974$, 902, 815, 802, $718 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}, 379.1264$; found, 379.1262.

3.3.3 Synthesis of benzoic acid derivatives. Scope on the side chain

$88, R_{1}=H, R_{2}=H, R_{3}=\mathrm{CO}_{2} \mathrm{Me}$ (commercially available) 77
33, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ tetrazole, $\mathrm{R}_{3}=\mathrm{H}$
38, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ N-phenylsulfamide, $\mathrm{R}_{3}=\mathrm{H}$
40, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ phenylsulfonamide, $\mathrm{R}_{3}=\mathrm{H}$
42, $\mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$
47, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$

89, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{Me}$
15, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ tetrazole, $\mathrm{R}_{3}=\mathrm{H}$
16, $R_{1}=H, R_{2}=$ N-phenylsulfamide, $R_{3}=H$
17, $R_{1}=H, R_{2}=$ phenylsulfonamide, $R_{3}=H$
90, $\mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$
91, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$
92, $\mathrm{R}_{1}=\mathrm{CH}_{2}$ OTHP, $\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$

Methyl 2-((5-acetyl-2-ethoxyphenyl)carbamoyl)benzoate (89)

Pale brown solid; Yield: 40%; mp $130-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

$\delta=9.16(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=197.2,167.1,167.0,150.9,138.2,132.2,130.5,130.3,130.1$, $129.3,127.5,127.5,124.8,120.7,110.5,64.7,52.7,26.6,14.6$; IR (neat): $\tilde{v}=3274,2954,2926,1727$, $1670,1651,1600,1584,1537,1497,1473,1427,1357,1335,1265,1202,1141,1115,1071,1035$, $959,805,767,709 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{5}^{+}, 364.1155$; found, 364.1155 .

N -(5-Acetyl-2-ethoxyphenyl)-3-(1 H -tetrazol-1-yl)benzamide (15)

Brown solid; Yield: 98%; mp $168-169^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta=10.19(\mathrm{~s}, 1 \mathrm{H}), 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.49-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.2,164.0,155.2$, $142.5,136.2,133.9,130.5,129.3,128.5,127.6,126.5,124.9,124.1,120.4,111.9,64.4,26.4,14.4$, IR (neat): $\tilde{v}=3439,3086,2970,2923,1666,1591,1535,1489,1430,1363,1336,1260,1242,1203$, 1133, 1090, 1078, 1032, 1006, 963, 893, 808, 742, $732 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}, 352.1404$; found, 352.1404.

N-(5-Acetyl-2-ethoxyphenyl)-3-(N-phenylsulfamoyl)benzamide (16)

White solid; Yield: 63% mp $186-189{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta=10.41(\mathrm{~s}, 1 \mathrm{H}), 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.86(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$, $7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=196.2,163.9,155.3,140.1,137.4,135.3,131.5,129.7,129.5,129.3,129.2$, $127.6,126.5,126.2,124.9,124.3,120.2,111.9,64.4,26.4,14.4$; IR (neat): $\tilde{v}=3423,3235,2986$, $1682,1667,1600,1589,1536,1482,1469,1433,1345,1258,1228,1211,1159,1111,1029,915$, 890, 814, 764, 754, $740 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}, 439.1322$; found, 439.1316 .

N-(5-Acetyl-2-ethoxyphenyl)-3-(phenylsulfonamido)benzamide (17)

Pale yellow solid; Yield: 52% over two steps; mp 217-220 ${ }^{\circ} \mathrm{C}$;
 Purity: $93 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.56$ (br, 1 H), 9.44 $(\mathrm{s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.2,164.5,154.5,139.3$, $138.1,135.4,133.1,129.5,129.4,127.1,126.8,126.6,123.6,122.9,122.7,119.1,111.7,64.4,26.4$, $14.4,1 \mathrm{C}$ is missing due to overlapping; IR (neat): $\tilde{v}=3393,3168,2973,2908,1667,1598,1584$, $1530,1472,1423,1366,1332,1273,1156,1139,1089,1044,971,899,881,808,743,720 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}, 439.1322$; found, 439.1324 .

Methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)-5-bromobenzoate (90)

Pale yellow solid; Yield: 44% over two steps; mp $159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{br}, 1 \mathrm{H}), 8.43(\mathrm{t}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.27(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=$ $8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}$, $3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=197.0,164.8,162.7,151.2,136.9,135.7,134.8,132.5,130.5,126.9,126.1,125.3,123.3,120.6$, $110.5,64.9,52.7,26.5,14.7$; IR (neat): $\tilde{v}=3414,2960,2922,1739,1689,1673,1588,1531,1485$, 1437, 1340, 1290, 1259, 1227, 1205, 1150, 1111, 1070, 1029, 981, 931, 889, 800, 750, 733, $723 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNNaO}_{5}^{+}, 442.0261$; found, 442.0264 .

Methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)-5-(methoxymethyl)benzoate (91)

White solid; Yield: 17% over two steps; mp 123-125 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.21$ $(\mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H})$, $4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=197.1,166.1,164.1,151.2$, $140.2,135.4,131.7,131.1,130.5,127.2,126.9,124.9,120.6,110.5,73.6$,
$64.8,58.6,52.5,26.6,14.7,1 \mathrm{C}$ is missing due to overlapping; IR (neat): $\tilde{v}=3422,2922,2851,1724$, $1686,1669,1601,1588,1531,1485,1431,1262,1223,1206,1146,1112,1031,999,885,794,746$, $727 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6}{ }^{+}, 386.1598$; found, 386.1596.

Methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)-5-(((tetrahydro-2H-pyran-2-
yl)oxy)methyl)benzoate (92)

$(\mathrm{s}, 3 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=197.1,166.1,164.2,151.1,140.2,135.3,131.8,131.0,130.6,130.5,127.2,126.8,124.9$, $120.6,110.5,98.3,68.0,64.8,62.2,52.4,30.5,26.5,25.4,19.3,14.7$; IR (neat): $\tilde{v}=3437,2935,2864$, $1721,1685,1669,1593,1552,1489,1441,1343,1313,1256,1214,1200,1182,1136,1115,1022$, 974, 906, 871, 802, 740, $716 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NNaO}_{7}{ }^{+}$, 478.1836; found, 478.1835.

93

Methyl 3-(5-acetyl-2-ethoxybenzamido)benzoate (94)

Pale yellow solid; Yield: 34%; mp $128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=10.04(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{ddd}, J=8.1,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (ddd, $J=7.7,1.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.4,166.7,162.4,160.0,138.5,133.8,133.3,131.0$, $130.9,129.2,125.4,124.4,120.9,120.9,112.6,65.7,52.2,26.5,14.8 ;$ IR (neat): $\tilde{v}=3319,2951,2925$, $1722,1671,1599,1560,1489,1435,1363,1335,1291,1268,1239,1213,1162,1109,1071,1025$, $969,884,814,795,751 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+}, 342.1336$; found, 342.1336.

3.4 Suzuki cross-coupling reactions

Methyl 3-((5-acetyl-2-cyclopropylphenyl)carbamoyl)benzoate (95)

To a solution of methyl 3-((5-acetyl-2-bromophenyl)carbamoyl)benzoate ($\mathbf{8 1}, 33 \mathrm{mg}, 0.088 \mathrm{mmol}$) in THF: $\mathrm{H}_{2} \mathrm{O}(3: 1,0.22 \mathrm{M}) \mathrm{Pd}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}$, 0.0089 mmol), S-Phos ($4.0 \mathrm{mg}, 0.0097 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(68 \mathrm{mg}, 0.312$ $\mathrm{mmol})$ were added. The solution was purged with N_{2} and heated to $90^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was diluted with water and extracted with EtOAc three times. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography ($1: 1$ hex:EtOAc) affording the final product in pure form as a pale brown solid ($15 \mathrm{mg}, 0.044 \mathrm{mmol}, 51 \%$ yield). mp $125-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{br}, 1 \mathrm{H}), 8.59(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.23(\mathrm{~m}$, $1 \mathrm{H}), 8.22-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97$ (s, 3H), 2.63 (s, 3H), 1.93 (tdd, $J=10.9,7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20-1.09$ (m, 2H), $0.86-0.76$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.7,166.1,164.2,137.7,136.8,136.3,135.0,132.9$, $131.8,130.9,129.4,128.6,127.5,124.1,121.0,52.5,26.7,11.7,6.2$; IR (neat): $\tilde{v}=3267,2954,2924$, $1725,1677,1643,1606,1569,1525,1413,1357,1319,1282,1251,1221,1201,1136,1098,1045$, 1015, 987, 898, 880, 813, 797, $727 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{4}{ }^{+}, 360.1206$; found, 360.1203.

General procedure for Suzuki cross-couplings

To a solution of methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)-5-bromobenzoate (90) in dioxane $(0.24 \mathrm{M})$ and water (1 drop), the corresponding boronic acid (1.1 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{eq})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.25 eq) were added. The reaction was stirred for 12 h at $90^{\circ} \mathrm{C}$. It was diluted with water and extracted with EtOAc three times. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The obtained residue was purified by flash column
chromatography (hex: $\mathrm{EtOAc}, 2: 1$ to pure EtOAc) affording the coupled products. This procedure was used to obtain intermediates 96 and 97. 96 was extracted and used in the next step without further purification.

Methyl 3-((5-acetyl-2-ethoxyphenyl)carbamoyl)-5-(furan-3-yl)benzoate (97)

Yellow solid; Yield: 42%; mp $156-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{t}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=1.4,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, $2.62(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $197.0,166.0,164.0,151.2,144.3,139.5,135.7,134.1,131.4,130.5,129.9,129.1,127.2,125.5,125.0$, $124.9,120.6,110.5,108.6,64.8,52.5,26.5,14.7$; IR (neat): $\tilde{v}=2927,2851,1724,1682,1592,1535$, 1434, 1261, 1024, 803, 794, 765, $748 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}_{6}{ }^{+}, 430.1261$; found, 430.1260.

3.5 Methyl ester hydrolysis of the amide coupling products

General procedure for ester hydrolysis

To a solution of the methyl ester (1 eq) in THF (0.1 M) a 1 M LiOH solution (5 eq) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2-6 h . It was then concentrated under reduced pressure and 1 M HCl was added. The obtained precipitate was washed with hexanes, $\mathrm{Et}_{2} \mathrm{O}$ and cold DCM , affording the desired carboxylic acids in pure form. For the synthesis of $\mathbf{1 8}$, the reaction mixture was diluted with water and extracted with DCM and $\mathrm{Et}_{2} \mathrm{O}$ three times. The pH of the water phase was then brought to $\mathrm{pH} 3-4$ by addition of 1 M HCl and the resulting precipitate was filtered off and washed with DCM.

For the synthesis of $\mathbf{2 0}$, the pH of the reaction mixture was brought to 1 by the addition of 1 M HCl solution. It was then concentrated, redissolved in $\operatorname{EtOH}(0.1 \mathrm{M})$ and PTSA (0.1 eq) was added. The solution was stirred at $25^{\circ} \mathrm{C}$ for 5 h and concentrated. Upon the addition of 1 M HCl solution, the final product precipitated. It was filtered out and washed with 1 M HCl solution and $\mathrm{Et}_{2} \mathrm{O}$ affording the desired alcohol in pure form.

In the case of $\mathbf{2 2}$, the reaction mixture was diluted with water and extracted with hexane. The aqueous phase was then brought to $\mathrm{pH} 3-4$ by addition of a 10% citric acid solution. It was extracted with EtOAc three times, the combined organic phases were dried over MgSO_{4} and evaporated under reduced pressure obtaining the final product $\mathbf{2 2}$ in pure form.

(E)-4-((5-Acetyl-2-methoxyphenyl)amino)-4-oxobut-2-enoic acid (1)

Yellow solid; Yield: 53%; mp $172-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=$ $8.82(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta=199.2,168.4,164.6,155.6,138.0,132.6,131.0$, $128.1,127.8,123.7,111.5,56.8,26.5$; IR (neat): $\tilde{v}=3306,3068,2949,2840,1702,1665,1589,1542$, $1516,1445,1422,1359,1302,1269,1213,1174,1134,1023,973,886,813 \mathrm{~cm}^{-1} ;$ HRMS (ESI), $m / z:$ calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{5}{ }^{+}, 264.0867$; found, 264.0869.

(E)-4-((5-Acetyl-2-methylphenyl)amino)-4-oxobut-2-enoic acid (2)

White solid; Yield: 60%; mp 203-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=$ $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=207.2,176.3,172.1,147.1,146.9$, $146.0,145.1,140.9,140.8,135.4,133.9,36.6,28.1$; IR (neat): $\tilde{v}=3266,2925,2604,1714,1659$, 1607, 1573, 1536, 1417, 1288, 1259, 1231, 1177, 977, 912, 905, 822, 811, $706 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}{ }^{+}, 248.0917$; found, 248.0916.

(E)-4-((5-Acetyl-2-fluorophenyl)amino)-4-oxobut-2-enoic acid (3)

White solid; Yield: 60%; mp 218-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=$ $8.76(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{ddd}, J=8.5,4.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD): $\delta=198.5,168.2,164.8,164.6,159.2,157.2$, $155.9,154.0,140.8,137.5,137.2,135.0,133.2,132.8,127.9(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=12.3 \mathrm{~Hz})$, $126.3(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 123.8,116.8(\mathrm{~d}, J=20.8 \mathrm{~Hz})$, $116.0(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 102.4,26.7$, presence of rotamers; IR (neat): $\tilde{v}=3446,3297,3084,1707,1666$, $1611,1601,1546,1487,1417,1362,1335,1293,1267,1192,1112,990,925,887,825,758,721 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}_{4}{ }^{+}, 252.0667$; found, 252.0669.
(E)-4-((3-Acetylphenyl)amino)-4-oxobut-2-enoic acid (4)

Off white solid; Yield: 90%; mp 237-239 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta=13.03(\mathrm{~s}, 1 \mathrm{H}), 10.72(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=$ $197.6,166.3,161.9,139.0,137.4,136.9,131.1,129.4,124.1,123.9,118.6,26.8$; IR (neat): $\tilde{v}=3349$, $2835,2682,2570,1703,1661,1609,1552,1490,1421,1363,1341,1307,1281,1166,974,879,794$ $\mathrm{cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}^{+}, 234.0761$; found, 234.0760.

2-((5-Acetyl-2-ethoxyphenyl)carbamoyl)cyclopropane-1-carboxylic acid (5)

White solid; Yield: 84%; mp 234-235 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta=12.50(\mathrm{br}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=196.2,173.1,169.1,152.7$, 129.2, 127.1, $125.9,121.9,111.4,64.3,26.3,23.3,21.5,14.4,14.2$; IR (neat): $\tilde{v}=3408,2992,2414,1716,1642$, $1598,1575,1517,1425,1366,1320,1271,1191,1130,1082,1037,969,930,892,879,810 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{5}{ }^{+}, 314.0999$; found, 314.0996.

3-((5-Acetyl-2-ethoxyphenyl)carbamoyl)benzoic acid (6)

White solid; Yield: 60%; mp 224-226 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD): δ $=8.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.61-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.25(\mathrm{ddd}, J=7.8,1.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17(\mathrm{ddd}, J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=196.2,166.8,164.6,155.2,134.8,132.3,131.7,131.2,129.3,129.0,128.5,127.4,126.7,124.7$, $111.9,64.4,26.4,14.4$; IR (neat): $\tilde{v}=3437,3412,2988,1710,1684,1672,1603,1585,1533,1429$, 1301, 1269, 1229, 1205, 1147, 1126, 1077, 1032, 904, 801, $732 \mathrm{~cm}^{-1}$; HRMS (ESI), $m / z:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5}{ }^{+}, 328.1180$; found, 328.1176.

3-((5-Acetyl-2-propoxyphenyl)carbamoyl)benzoic acid (9)

Beige solid; Yield: 77%; mp 208-211 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta=8.63(\mathrm{dd}, J=15.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=189.7$, $159.2,157.9,146.7,126.8,124.6,123.3,121.6,120.7,120.1,119.0,118.6,115.3,103.0,62.3,17.0$, $14.0,1.3,1 \mathrm{C}$ is missing due to overlapping; IR (neat): $\tilde{v}=3427,2965,2940,1719,1665,1639,1590$, 1507, 1434, 1404, 1389, 1333, 1262, 1206, 1158, 1070, 1035, 1009, 910, 810, $727 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+}, 342.1336$; found, 342.1341.

3-((5-Acetyl-2-isobutoxyphenyl)carbamoyl)benzoic acid (10)

White solid; Yield: 94%; mp 221-223 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$\left.d_{6}\right): \delta=13.21(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{dt}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.97$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=196.2,166.7,164.5,155.7,134.8,132.2,131.6,131.2$, $129.3,129.0,128.3,127.6,126.7,124.9,111.8,74.5,27.7,26.4,18.9$; IR (neat): $\tilde{v}=3375,2963,2933$, 2877, 2469, 1682, 1644, 1596, 1581, 1510, 1426, 1411, 1356, 1316, 1297, 1270, 1214, 1128, 1107, 1017, 956, 885, 810, 724, $724 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}, 378.1312$; found, 378.1309 .

3-((5-Acetyl-2-(cyclopropylmethoxy)phenyl)carbamoyl)benzoic acid (11)

Beige solid; Yield: 54%; mp 221-223 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-
 $\left.d_{6}\right): \delta=13.23(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 8.21-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.51(\mathrm{~m}$, $2 \mathrm{H}), 0.42-0.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=196.2,166.7,164.4,155.2,134.8$, $132.3,131.7,131.2,129.4,129.1,128.3,127.4,126.8,124.4,112.3,72.9,26.4,9.9,3.0$; IR (neat): $\tilde{v}=$ 3075, 2957, 2927, 1716, 1670, 1597, 1582, 1510, 1432, 1412, 1396, 1291, 1276, 1262, 1217, 1160, 1111, 1069, 1023, 991, 906, 796, $728 \mathrm{~cm}^{-1} ;$ HRMS (ESI), m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{5}{ }^{+}, 376.1155$; found, 376.1151.

3-((5-Acetyl-2-(benzyloxy)phenyl)carbamoyl)benzoic acid (12)

White solid; Yield: 79%; mp 210-215 ${ }^{\circ} \mathrm{C}$; Purity: 93%; ${ }^{1} \mathrm{H}$ NMR
 (400 MHz, DMSO- d_{6}): $\delta=9.88(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=196.2,167.1,165.0,155.0,136.5,134.5,132.2,130.7$, $129.7,128.4,128.3,127.8,127.3,127.1,125.1,112.5,69.9,26.4$, three carbons are missing due to overlapping; IR (neat): $\tilde{v}=3414,3085,1713,1660,1637,1593,1584,1510,1434,1400,1390,1323$, $1296,1274,1221,1165,1021,995,896,803,724,702 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+}$, 390.1336; found, 390.1335.

3-((5-Acetyl-2-morpholinophenyl)carbamoyl)benzoic acid (13)

 $196.7,166.8,164.2,149.3,134.7,132.5,131.9,131.8,131.3,131.2,129.3,128.2,126.5,124.2,119.7$, 66.4, 51.0, 26.6; IR (neat): $\tilde{v}=3346,2981,2831,1723,1676,1644,1598,1577,1529,1457,1432$, 1283, 1234, 1215, 1112, 1069, 935, 918, 894, 848, 824, $726 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}^{+}, 369.1445$; found, 369.1444.

3-((5-Acetyl-2-cyclopropylphenyl)carbamoyl)benzoic acid (14)

Pale yellow solid; Yield: 57%; mp 95-100 ${ }^{\circ} \mathrm{C}$; Purity: $83 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=10.29(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.09(\mathrm{~m}, 3 \mathrm{H}), 7.94$ $(\mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.69$
(m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=197.0,167.1,165.4,145.0,137.1,134.5,134.4,132.2$,
$130.9,128.5,128.5,126.3,126.2,124.9,26.6,11.5,9.0$, one C is missing due to overlapping; IR (neat): $\tilde{v}=3282,2920,1683,1638,1608,1571,1532,1416,1358,1294,1260,1231,1101,1077$, 1046, 1022, 882, 819, 797, $728 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}, 346.1050$; found, 346.1047.

3-((2-Ethoxy-5-(methylcarbamoyl)phenyl)carbamoyl)benzoic acid (24)

Pale brown solid; Yield: 62%; mp 226-229 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD): $\delta=8.60(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.22$ $(\mathrm{m}, 1 \mathrm{H}), 8.19-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $(100 \mathrm{MHz}, \mathrm{MeOD}): \delta=170.3,168.8,167.4,154.6,136.3,134.0,132.9$, $132.8,132.7,130.2,130.1,130.0,129.6,127.8,127.7,126.7,123.7,112.6,65.8,27.0,15.0$, presence of rotamers; IR (neat): $\tilde{v}=3398,3081,2981,2525,1689,1661,1601,1573,1467,1429,1395,1336$, 1267, 1234, 1195, 1167, 1123, 1029, 913, 782, 760, $735 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}, 343.1289$; found, 343.1283.

$$
\begin{aligned}
& \text { 89, } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CO}_{2} \mathrm{Me} \\
& \text { 96, } \mathrm{R}_{1}=\text { pyridine, } \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H} \\
& \text { 97, } \mathrm{R}_{1}=\text { furane, } \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H} \\
& \text { 91, } \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H} \\
& \text { 92, } \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OTHP}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}
\end{aligned}
$$

2-((5-Acetyl-2-ethoxyphenyl)carbamoyl)benzoic acid (8)

White solid; Yield: 57%; mp 143-146 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=$ $8.75(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right): \delta=198.7,197.9$, $169.8,169.1,168.0,154.3,151.3,138.4,136.6,132.7,131.8,130.9,130.6,130.0,129.5,129.5,128.8$, 128.1, 127.4, 126.6, 123.4, 120.4, 114.1, 110.9, 109.8, 64.5, 63.8, 48.2, 48.1, 48.1, 47.9, 47.9, 47.8, 47.7, 47.7, 47.7, 47.7, 47.6, 47.4, 47.3, 47.3, 47.1, 25.1, 24.9, 13.7, 13.4, presence of rotamers; IR (neat): $\tilde{v}=3272,2970,2936,1713,1662,1603,1583,1540,1498,1436,1275,1254,1220,1159$, 1128, 1043, 933, 884, 809, 786, 730, 710, $704 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5}^{+}$, 328.1180; found, 328.1181.

White solid; Yield: 40% over two steps; mp 270-276 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=9.91(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H})$, $8.45(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ $(\mathrm{s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=196.2$, $166.3,164.1,155.6,145.4,136.3,136.0,132.5,131.0,130.8,130.4,129.4$, $127.8,126.4,125.5,123.6,112.0,64.4,26.4,14.4,1 \mathrm{C}$ is missing due to overlapping; IR (neat): $\tilde{v}=$ $3441,2969,1682,1591,1540,1432,1357,1331,1260,1225,1203,1066,1027,797,748,732,707$ cm^{-1}; HRMS (ESI), m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}, 405.1445$; found, 405.1440 .

3-((5-Acetyl-2-ethoxyphenyl)carbamoyl)-5-(furan-3-yl)benzoic acid (19)

Beige solid; Yield: 55%; mp 210-214 ${ }^{\circ} \mathrm{C}$; Purity: $93 \% ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=13.37(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.22$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.38$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=196.3,166.8$, $164.5,155.4,144.8,140.6,135.5,132.9,131.9,129.3,128.9,128.6,127.6$, 127.0, 126.6, 125.2, 124.7, 111.9, 108.7, 64.4, 26.5, 14.5; IR (neat): $\tilde{v}=3424,3147,2988,2935,1719$, $1678,1658,1588,1540,1492,1432,1361,1336,1266,1202,1183,1141,1070,1024,907,890,873$, 808, 795, $741 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{6}{ }^{+}, 394.1285$; found, 394.1279.

3-((5-Acetyl-2-ethoxyphenyl)carbamoyl)-5-(methoxymethyl)benzoic acid (21)

White solid; Yield: 50%; mp $185-187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=13.29(\mathrm{br}, 1 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.20$ $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=196.3,166.8,164.6,155.4,139.6,134.9$, $131.2,131.0,130.6,129.4,127.6,126.7,125.0,111.9,72.7,64.4,57.9,26.5$, 14.5; one C is missing due to overlapping; IR (neat): $\tilde{v}=3443,2986,2922,1683,1592,1539,1432$, 1361, 1263, 1243, 1190, 1135, 1113, 1035, 893, 809, 742, $708 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{6}{ }^{+}, 394.1261$; found, 394.1263.

3-((5-Acetyl-2-ethoxyphenyl)carbamoyl)-5-(((tetrahydro-2H-pyran-2-yl)oxy)methyl)benzoic acid

 (22)

White solid; Yield: 78%; mp $165-170{ }^{\circ} \mathrm{C}$; Purity: $92 \% ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=13.23(\mathrm{br}, 1 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=$
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ $(\mathrm{ddd}, J=11.1,8.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.44$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=196.4,166.8,164.7,155.3$, $139.8,135.1,131.4,131.2,130.8,129.5,127.6,127.5,126.9,124.8,112.0,97.8,67.6,64.5,61.6$, $30.3,26.5,25.1,19.2,14.5$; IR (neat): $\tilde{v}=3427,2938,2873,1718,1679,1647,1590,1536,1436$, 1343, 1296, 1260, 12001, 1185, 1121, 1073, 1027, 976, 957, 899, 809, $743 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NNaO}_{7}^{+}, 464.1680$; found, 464.1678.

3-((5-Acetyl-2-ethoxyphenyl)carbamoyl)-5-(hydroxymethyl)benzoic acid (20)

White solid; Yield: 27 \% over two steps; mp 225-228 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO $\left.d_{6}\right): \delta=13.24(\mathrm{~s}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=$ $196.3,167.0,164.7,155.3,143.8,134.7,131.0,130.1,129.8,129.4,127.5,126.9,126.8,124.9,111.9$, $64.4,62.2,26.5,14.5$; IR (neat): $\tilde{v}=3391,3262,2975,2933,1719,1646,1604,1581,1541,1498$, $1477,1437,1361,1336,1298,1274,1232,1206,1183,1147,1054,1037,987,904,893,821,796$, $753,710 \mathrm{~cm}^{-1}$; HRMS (ESI), m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{6}{ }^{+}, 358.1285$; found, 358.1285.

3-(5-Acetyl-2-ethoxybenzamido)benzoic acid (23)

Pale yellow solid; Yield: 69% mp 209-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta=12.96(\mathrm{br}, 1 \mathrm{H}), 10.34(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=$ 6.9 Hz, 2H) , $2.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,

DMSO- d_{6}): $\delta=196.0,167.1,164.0,159.5,139.1,132.4,131.4,130.2,129.4,129.0,124.9,124.4$, 123.7, 120.3, 112.7, 64.7, 26.5, 14.4; IR (neat): $\tilde{v}=3343,2981,1719,1670,1596,1552,1488,1409$, 1362, 1299, 1265, 1203, 1149, 1110, 1080, 1025, 921, 890, 811, $756 \mathrm{~cm}^{-1}$; HRMS (ESI), m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{5}{ }^{+}, 350.0999$; found, 350.0995.

4. Bromodomain expression and purification

Proteins were purified as described previously. ${ }^{21}$ Briefly, His-tagged bromodomains were expressed in Escherichia coli BL21(DE3) cells upon induction with isopropyl thio-beta-D-galactoside (IPTG, final concentration 0.1 mM) for 16 h at $18^{\circ} \mathrm{C}$. Bacteria were lysated and (when required) the resulting extract was treated to remove DNA, adding 0.15% polyethylenimine (PEI). The His-tagged proteins were purified on HisTrap columns (GE Healthcare) and eluted using a step gradient of imidazole. The poly-Histidine tags were removed by overnight incubation with His-tagged tobacco etch virus (TEV) protease purified in-house (if required by the purification protocol, in the meantime the sample was exchanged via dialysis). A size-exclusion chromatography step (HiLoad 16/600 Superdex75 column) and a Ni-affinity chromatography step were subsequently performed to finally purify the cleaved bromodomains. Samples were then concentrated, flash frozen and stored at $-80^{\circ} \mathrm{C}$.

5. X-ray crystallography

Crystallization, Data Collection, and Structure Determination

Crystals of the CREBBP bromodomain were grown at $4^{\circ} \mathrm{C}$ using the hanging drop vapor diffusion method. A 50 mM solution of compound 6 (in 100% DMSO) was added into the CREBBP protein to reach a final DMSO concentration of $1 \%(\mathrm{v} / \mathrm{v})$ and the mixture was incubated on ice for 1 hour before crystallization. Then equal volumes of protein (with compound 6) and reservoir solutions (0.1 M MES pH 6.5, $0.10 \mathrm{MgCl}_{2}, 20 \%$ PEG 6000, 10% ethylene glycol) were mixed and crystals appeared after 1 to 2 days. The crystals were flash-frozen in liquid nitrogen with extra 10% ethylene glycol as cryoprotectant for measurements. Data sets were collected on a PILATUS 6MF detector at the Swiss Light Source beamline X06SA of the Paul Scherrer Institute (Villigen, Switzerland) and indexed, integrated and scaled with the XDS ${ }^{22}$ and CCP4 programs. ${ }^{23}$ The structures were solved by molecular replacement with PHASER ${ }^{24}$ using the CREBBP structure (PDB entry 4NR5) as a search model and refined with PHENIX. ${ }^{25}$ The atomic coordinates and structure factors of CREBBP in complex with inhibitor 6 have been deposited with the Protein Data Bank as entry 4TQN.

Table S1

	Compound 6
Space group	P1 21 1
Unit cell	
a (A)	24.94
b (A)	42.94
c (A)	51.98
alpha	90.00
beta	97.24
gamma	90.00
Resolution range (\AA)	$42.94-1.70$
Unique reflections	$12119(1768)$
<I/ $\sigma(\mathrm{I})>$	$15.6(5.3)$
R merge	$0.068(0.380)$
Completeness $(\%)$	$99.9(99.2)$
Multiplicity	$6.5(6.2)$
Refinement	
Resolution range (\AA)	$33.00-1.70$
R factor/R free	$0.1813 / 0.1990$
Mean B factors $(\mathrm{A} 2)$	23.24
RMS bonds (\AA)	0.006
RMS angles $\left({ }^{\circ}\right)$	1.155

5.1 Composite Omit Map of Ligand 6

Figure S2. $2 m \mathrm{~F}_{\mathrm{o}}-D \mathrm{~F}_{\mathrm{c}}$ electron density maps contoured at 1σ (grey mesh) were generated in a region within $1.6 \AA$ for compound 6 using PHENIX and Pymol.

6. Thermal shift measurements

Thermal shift measurements were carried out as previously described ${ }^{26}$ with a final volume of $20 \mu 1$, ligand and protein concentrations $100 \mu \mathrm{M}(50 \mu \mathrm{M}$ for compound 18$)$ and $2 \mu \mathrm{M}$, respectively. The reported values $\left(\Delta \mathrm{T}_{\mathrm{m}}\right)$ are calculated as the difference between the transition midpoints of an individual sample and the average of the reference wells (containing the protein and the DMSO only) in the same plate. DMSO concentration was kept at $0.2 \%(\mathrm{v} / \mathrm{v})$.

6.1 Phylogenetic tree

The bromodomain sequence aligment previously reported by Filippakopoulos et. al. was used excluding the residues from the plasmid. ${ }^{21}$ The evolutionary history was inferred using the NeighborJoining method. ${ }^{27}$ The optimal tree with the sum of branch length $=21.33784094$ is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method ${ }^{28}$ and are in the units of the number of amino acid substitutions per site. The analysis involved 61 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 57 positions in the final dataset. Evolutionary analyses were conducted in MEGA6. ${ }^{29}$

6.2 Correlation between IC_{50} and Thermal Shift values with CREBBP

Figure S3. Correlation between IC_{50} values (determined by TR-FRET assay at BPS Bioscience) and thermal shift values ($\Delta \mathrm{T}_{\mathrm{m}}$) obtained with CREBBP. Average and SEM of the thermal shift results are shown.

7. TR-FRET assays

TR-FRET assays were carried out in duplicate at BPS Bioscience using a recombinant CBP bromodomain (BPS catalogue \#31128) and the BET Ligand (BPS catalogue \#33000) as provided in the CREBBP TR-FRET Assay Kit (BPS catalogue \#32619). A 10 mM solution of the compound under investigation in DMSO was prepared and shipped to BPS Bioscience, where it was tested at 10 concentrations over the range of $0.001-10 \mu \mathrm{M}$ (compounds $\mathbf{6}, \mathbf{7}, \mathbf{9 - 1 3}, \mathbf{1 5 - 1 9}, \mathbf{2 1 - 2 3}$) or $0.01-100 \mu \mathrm{M}$ (compounds $\mathbf{1 - 5}, \mathbf{8}, \mathbf{1 4}, \mathbf{2 0}, \mathbf{2 4}$). Each compound solution was then diluted in water to obtain a 10% DMSO solution. $2 \mu \mathrm{~L}$ of this dilution were added to a $20 \mu \mathrm{~L}$ reaction mixture ($12.5 \mathrm{nM} \mathrm{CBP}, 125 \mathrm{nM}$ BET Ligand, including FRET dyes and the amount of compound needed to reach the indicated concentration in the Table below). The resulting mixture was incubated for 2 hours at room temperature prior to reading the TR (time resolved)-FRET signal using a Tecan Infinite M1000 plate reader. The negative control consisted of the aforementioned mixture in which the buffer was added in place of compound. TR-FRET were recorded as the ratio of the fluorescence of the acceptor and the donor dyes (acceptor/donor).

The TR-FRET data was analyzed using Graphpad Prism software. The percent activity in the presence of each compound was calculated according to the following equation: \% activity $=[(\mathrm{F}-\mathrm{Fb}) /(\mathrm{Ft}-$ Fb) $] \times 100$, where Ft is the TR-FRET signal in the absence of any compound (100% activity), Fb the TR-FRET signal in the absence of the bromodomain (0% activity) and F the TR-FRET signal in the presence of the compound. The percent inhibition was calculated according to the following equation: $\%$ inhibition $=100-\%$ activity. The values of $\%$ activity versus a series of compound concentrations were then plotted using non-linear regression analysis of Sigmoidal dose-response curve generated with the equation $\mathrm{Y}=\mathrm{B}+(\mathrm{T}-\mathrm{B}) / 1+10^{(\text {LLogC50-X }) \times \text { Hill Slope })}$, where $\mathrm{Y}=$ percent activity, $\mathrm{B}=$ minimum percent activity, $\mathrm{T}=$ maximum percent activity, $\mathrm{X}=$ logarithm of compound and Hill Slope=slope factor or Hill coefficient. The IC_{50} value corresponds to the concentration causing a half-maximal percent activity.

8. BROMOscan assays

K_{D} and \% binding of binding affinity determinations by means of BROMOscan technology was carried out at DiscoveRx. E. coli derived from BL21 strain was used as host to grow T7 phage strains displaying the bromodomains. E. coli, grown to log-phase, were infected with T7 phage (from a frozen stock, being the multiplicity of infection 0.4) and incubated while shaking at $32{ }^{\circ} \mathrm{C}$ for $90-150$ minutes, until lysis. In order to remove cell debris, lysates were centrifuged at $5,000 \mathrm{xg}$ and filtered $(0.2 \mu \mathrm{~m})$. Affinity resins were obtained by treating streptavidin-coated magnetic beads with biotinylated acetylated peptide ligands for 30 minutes at $25^{\circ} \mathrm{C}$. Those beads were then blocked with excess of biotin and washed with blocking buffer (SeaBlock (Pierce), 1% bovine serum albumin, BSA, 0.05% Tween20, 1 mM dithiothreitol, (DTT) removing the unbound ligand and reducing nonspecific phage binding.

During the experiment, the bromodomain, ligand-bound affinity beads and test compounds were combined in a buffer composed of 17% SeaBlock, $0.33 x$ phosphate-buffered solution, PBS, 0.04% Tween $20,0.02 \%$ BSA, 0.004% sodium azide and 7.4 mM DTT. Test compounds were prepared as 50 mM in pure DMSO and diluted to 5 mM with monoethylene gycol, MEG ($100 \times$ concentrated in respect to the top screening concentration, $50 \mu \mathrm{M}$). During the assay a DMSO and MEG final concentration of 0.1% and 0.9% respectively was used. The assays were carried out in polystyrene 96well plates in a final volume of 0.135 mL . The assay plates were incubated at $25^{\circ} \mathrm{C}$ with shaking for 1 hour and the affinity beads were washed with a buffer composed of 0.05% Tween 20 in PBS. The beads were then re-suspended in the elution buffer (1 x PBS, 0.05% Tween $20,2 \mu \mathrm{M}$ non-biotinylated affinity ligand) and incubated at $25^{\circ} \mathrm{C}$ with shaking for 30 minutes. The bromodomain concentration in the eluates was measured by qPCR. Binding constants $\left(\mathrm{K}_{\mathrm{d}}\right)$ were calculated with a standard doseresponse curve using the Hill equation and curves were fitted using a non-linear least square fit with the Levenberg-Marquardt algorithm. The \% of binding interactions are reported as '\% Ctrl', where lower numbers indicate stronger hits. The corresponding values were obtained as follows:

$$
\% c t r l=\frac{\text { test compound signal }- \text { positive control signal }}{\text { negative control signal }- \text { positive control signal }} \times 100
$$

Figure S4. Dose response curves for the binding of the CREBBP bromodomain to compounds \mathbf{A}, \mathbf{B}, 6, 7, 19 and 21-23 performed at DiscoveRx.

Figure S5. Dose response curves for the binding of the BET bromodomains to compounds 6, 19 and 21 performed at DiscoveRx.

9. ITC EXPERIMENTS

Isothermal Titration Calorimetry experiments were performed on a VP-ITC instrument (MicroCal, Inc., Northampton, MA). Protein samples thoroughly dialyzed against the same batch of buffer in order to minimize artifacts due to minor differences in buffer composition and the protein concentration was determined after a filtering through a $0.22 \mu \mathrm{~m}$ pore-size filter.

Bromodomains $(300-500 \mu \mathrm{M})$ were injected into the $1.4-\mathrm{mL}$ sample cell containing the compound (50 $\mu \mathrm{M}$) dissolved into the ITC buffer (50 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \% \mathrm{DMSO}$). The titration experiments were carried out at $15^{\circ} \mathrm{C}$ while stirring at 300 rpm : after a control injection of $2 \mu \mathrm{~L}, 29$
$10-\mu \mathrm{L}$ injections (10 s duration, with a 4 min interval between) were performed. The raw data were integrated, normalized for concentration, and analyzed using a single binding site model, supplied with the MicroCal Origin software package to obtain the apparent K_{d} values ($\mathrm{K}_{\mathrm{d}}{ }^{\text {app }}$). The actual K_{d} values were calculated assuming that DMSO acted as a competing ligand ${ }^{30}$ according to the equation: ${ }^{31}$

$$
K_{d}=\frac{K_{d}^{a p p}}{1+\frac{[D M S O]}{K_{d}^{D M S O}}}
$$

where [DMSO] and $\mathrm{K}_{\mathrm{d}}{ }^{\text {DMSO }}$ indicate the DMSO concentration in the ITC buffer and the dissociation constant of the DMSO for the bromodomain under investigation, respectively (Figure S6).
The $K_{d}{ }^{\text {DMSO }}$ value for CREBBP was calculated titrating the histone H3K56ac peptide (ac-IRRYQ(Kac)STELLY-am, where ac-, -am and Kac, indicate acetylation, amidation and acetylated lysine side chain, respectively, purchased at GenScript) into a CREBBP bromodomain solution in the presence and absence of 0.75% DMSO with protein and peptide concentrations of 688 or $740 \mu \mathrm{M}$ and $85 \mu \mathrm{M}$, respectively (Figure S7).

Figure S6. ITC titration curves for the binding of the CREBBP and BRD4(1) bromodomains (upper and lower panels, respectively) to compounds 6, 19 and 21.

exp	[DMSO] (M)	app $\mathrm{K}_{\mathrm{d}}(\mu \mathrm{M})$
1	0.000	4.77
2	0.106	15.71
$\boldsymbol{K}_{d_{c m p d}}^{\text {app }}$		
$1+\frac{[D M S O]}{K_{d_{D M S O}}}$		
$K_{d_{\text {DMSO }}}=46.3 \mathrm{mM}$		

Figure S7. The N-terminally acetylated, C-terminaly amidated IRRYQ(Kac)STELLY peptide was titrated into a CREBBP bromodomain solution in the absence of DMSO (experiment 1) and in the presence of 0.75% DMSO (experiment 2). The K_{d} for DMSO was calculated as shown in the right panel.

Table S2. Thermodynamic parameters measured by ITC for the CREBBP bromodomain. $\Delta \mathrm{G}$ and $\Delta \mathrm{H}$ values are given in $\mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{S}$ values are given in $\mathrm{cal} / \mathrm{mol} / \mathrm{T}$.

$\mathbf{C p d}$	\mathbf{N}	$\mathbf{K}_{\mathbf{d}}{ }^{\text {app }}(\boldsymbol{\mu M})$	$\mathbf{\Delta G}$	$\mathbf{\Delta H}$	$\mathbf{\Delta S}$
$\mathbf{6}$	0.99 ± 0.01	8.13 ± 0.43	-6.7	-10.9 ± 0.1	-14.5
$\mathbf{1 9}$	0.70 ± 0.00	1.11 ± 0.08	-7.9	-13.7 ± 0.1	-20.1
$\mathbf{2 1}$	0.79 ± 0.00	3.25 ± 0.10	-7.2	-11.9 ± 0.0	-16.2

10. Cell culture and cytotoxicity measurements

MDA-MB-231, HT-29 cells (obtained from the UZH Cancer Institute) and HeLa cells (obtained from Dr. Nathan Luedtke, Chemistry Department, UZH) were cultured in DMEM supplemented with 10 \% (v/v) fetal bovine serum. K562 cells (obtained from Dr. Silvio Hemmi, Institute of Molecular Life Sciences, UZH), HL-60, ML2 (obtained from Dr. Nathan Luedtke, Chemistry Department, UZH) and HOP-92 (purchased from the NCI) were cultured using RPMI medium supplemented with 10% (v / v) fetal bovine serum. Finally, AML3, PL-21 and MOLM-13 (obtained from Dr. Nathan Luedtke, Chemistry Department, UZH) were cultured using RPMI medium supplemented with 20% (v / v) fetal bovine serum. All the media were additionally supplemented with 100 units $/ \mathrm{mL}$ of penicillin, 100 $\mu \mathrm{g} / \mathrm{mL}$ of streptomycin, $4.5 \mathrm{~g} / \mathrm{L}$ glucose, $0.11 \mathrm{~g} / \mathrm{L}$ sodium pyruvate and 2 mM glutamine and the cells were grown at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ atmosphere with 80% relative humidity.

MDA-MB-231, HT-29, HeLa, HOP-92 and PC-3 cells were plated at 10,000 cells per well ($100 \mu \mathrm{~L}$ per well) in 96 -well culture dishes and allowed to incubate for 24 h . The old media was removed, cells were washed with PBS (phosphate-buffered saline) and fresh medium was added. A 5 mM solution of inhibitor (in 100% DMSO) was serially diluted in the culture media (8 different concentrations were used) and allowed to incubate for 72 h (MDA-MD-231, HT-29, HOP-92, HL-60, ML2, AML3, PL-21, MOLM-13 and PC-3) or 48h (HeLa and K562). Control cells were treated with the same DMSO concentrations. After the incubation period the medium was removed, cells were washed with PBS to be then incubated with fresh medium containing 86 nM resazurin. Resazurin is reduced to the fluorescent resorufin in the mitochondria: the fluorescence intensity upon incubation in the presence of a living cell culture thus directly correlates with the metabolic viability of the cells. Fluorescence was quantified after 4 hours using a fluorescence microplate reader (Biotek, FLx800 ${ }^{\mathrm{TM}}$, excitation and emission wavelengths 560 and 590 nm , respectively). The measured fluorescence values were corrected from the control samples containing DMSO.

Leukemia cell lines (K562, HL-60, ML2, AML3, PL-21 and MOLM-13) were seeded at a density of 20,000 cells per well in $100 \mu \mathrm{~L}$ of RMPI media in 96 well microtiter plates. After 24 hours, $12.5 \mu \mathrm{~L}$ of a 10 fold concentrated drug (or DMSO solution for the control) in RMPI media was added in every well. After 48 hour incubation, resazurin was added to every well to obtain a final concentration of 86 nM and, after 3 hours, cell viability was assessed by measuring the ability of the
cells to process resazurin by quantifying the fluorescence using a fluorescence microplate reader (Biotek, FLx800 ${ }^{\mathrm{TM}}$) as described above.

Table S3. Resazurin reduction (percentage of the control) upon incubation of compounds $\mathbf{6}, \mathbf{9}$, $\mathbf{1 0}, \mathbf{1 5}, \mathbf{1 9}-\mathbf{2 3}$ for 48 or 72 h at a concentration of $50 \mu \mathrm{M}$ in eleven different cancer cell lines. This preliminary screening of toxicity was done as a single experiment. NM indicates no metabolic activity change in comparison to the DMSO-treated cells.

	MDA-MD-231	HT-29	HeLa	HOP-92	K562	HL-60	ML2	AML3	PL-21	MOLM-13	PC-3
$\mathbf{6}$	NM	NM	NM	80.3	98.3	77.1	98.3	86.8	90.2	65.2	87.7
$\mathbf{9}$	90.7	NM	94.8	91.0	NM	62.8	NM	87.3	74.7	15.1	84.3
$\mathbf{1 0}$	NM	NM	97.6	71.9	NM	87.8	97.3	90.0	86.0	NM	89.1
$\mathbf{1 5}$	86.7	NM	93.2	97.8	81.3	43.2	64.1	63.0	59.4	50.2	94.1
$\mathbf{1 9}$	NM	NM	84.5	65.3	84.8	42.1	53.2	68.9	69.2	49.4	65.0
$\mathbf{2 0}$	84.3	NM	94.2	72.8	NM	90.3	NM	98.7	NM	76.3	99.9
$\mathbf{2 1}$	94.4	NM	90.4	77.3	NM	84.7	NM	96.9	94.3	73.2	81.8
$\mathbf{2 2}$	88.2	NM	89.3	78.3	90.8	45.7	26.5	69.9	70.5	43.0	64.1
$\mathbf{2 3}$	NM	NM	NM	NM	99.2	68.6	NM	84.2	86.3	74.8	69.5

Table S4. Metabolic activity values (\%) on three different leukemia cell lines at $50 \mu \mathrm{M}$ compound concentration. ${ }^{[a]}$

Cmpd	HL-60		ML2		MOLM-13	
	Acid	Ester	Acid	Ester	Acid	Ester
$\mathbf{6}$	80	78	93	75	71	$46(46 \mu \mathrm{M})^{[b]}$
$\mathbf{9}$	78	89	66	97	$19(33 \mu \mathrm{M})^{[b]}$	82
$\mathbf{1 0}$	89	89	100	86	89	88
$\mathbf{1 1}$	77	85	88	99	73	76
$\mathbf{1 5}$	59	-	107	-	57	-
$\mathbf{1 9}$	59	96	91	85	60	90
$\mathbf{2 0}$	89	-	102	-	91	-
$\mathbf{2 1}$	81	74	104	73	85	66
$\mathbf{2 2}$	65	73	93	$36(14.4 \mu \mathrm{M})^{[b]}$	61	$11(5.3 \mu \mathrm{M})^{[\mathrm{b}]}$
$\mathbf{2 3}$	82	88	66	60	60	$26(37 \mu \mathrm{M})^{[\mathrm{b}]}$

[a] Metabolic activity values were determined using resazurin reduction after 72 h incubation with the corresponding compound in comparison to DMSO treated cells at eight different concentrations (100$0.8 \mu \mathrm{M})$. The $\%$ of metabolic activity at $50 \mu \mathrm{M}$ compound concentration is shown. The \% of metabolic activity is given as the mean of at least three independent experiments. Variability around
the mean value was $<26 \%$ in all cases. [b] Values in parentheses are GI_{50} values as determined by triplicate experiments with less than 30% standard error.

11. Comparison table to known CREBBP ligands

Table S5. Activity and selectivity of acyl benzene derivatives and comparison with previously reported CREBBP bromodomain ligands.

Cmpd	$L E E^{[a]}$	LLE		$\mathrm{K}_{\mathrm{d}}(\mu \mathrm{M})$ competition binding assay ${ }^{32-33}$					$\Delta \mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{[b]}$		
			CBP	CBP	BRD4(1)	BRD4(2)	BRD2 (1,2)	$S^{[c]}$	CBP	EP300	BRD4(1)
This study											
6	0.35	3.7	2.0	0.77	>50	>50	>50	>65	3.6	3.4	0.5
19	0.32	3.2	0.3	0.17	10	36	36	59	4.9	5.9	1.7
21	0.32	4.0	0.8	0.54	26	>50	>50	48	5.0	4.6	1.3
22	0.28	3.8	-	0.40	-	-	-	-	6.0	5.9	1.6
Reported by others (main text, Figure 3, bottom)											
25^{34}	0.25	2.4	-	$0.20{ }^{\text {[d] }}$	$0.16{ }^{[d]}$	-	-	0.8	7.6	-	4.4
26^{35}	0.29	4.3	0.3	-	$1.38{ }^{\text {[e] }}$	-	-	4	5.4	-	-
27^{36}	0.27	2.0	0.021	$0.080^{[d]}$	0.85	5.2	-	40	9.7	9.7	1.8

[a] LE = ligand efficiency calculated as ($\Delta \mathrm{G} /$ number of heavy atoms) is reported in kcal/mol per heavy atom; $\mathrm{LLE}=$ lipophilic ligand efficiency (calculated as $\mathrm{pK}_{\mathrm{d}}-c \log \mathrm{P}$), ${ }^{37-38} \operatorname{clog} \mathrm{P}$ was calculated using ChemDraw. [b] Median value of the shift in the melting temperature (number of measurements between 9 and 38 per compound/protein pair). The largest SEM was $0.5^{\circ} \mathrm{C}$ and most SEM values were below $0.2^{\circ} \mathrm{C}$. [c] Selectivity (S) between the CREBBP and BRD4(1) bromodomains determined by the ratio of K_{d} values obtained via the competition binding assay. It was not possible to calculate the selectivity using the K_{d} values obtained via ITC due to the impossibility to reliably fit the titration curves for the BRD4(1) bromodomain. [d] Potency determined by AlphaScreen. [e] Potency determined by Isothermal Titration Calorimetry (ITC).

12. NMR traces of selected compounds

12.1 Intermediate compounds

(

(

(

(

(

(

12.2 Final compounds

(

13. HPLC trace (for purity) of tested compounds

$\#$	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.5	0.5644	1.11
2	2.6	49.6291	97.56
3	2.9	0.6784	1.33

$\#$	RT [min]	Area	Area Frac. \%
1	2.4	1.0120	1.65
2	2.6	60.4380	98.35

$\#$	RT [min]	Area	Area Frac. \%
1	2.4	1.0650	0.45
2	2.6	238.0792	99.55

\#	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.5	2.4005	0.50
2	2.7	472.3789	99.29
3	3.5	0.9934	0.32

$\#$	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.6	0.3332	0.32
2	2.8	103.1426	99.68

$\#$	RT [min]	Area	Area Frac. \%
1	3.2	23.2620	95.83
2	3.7	1.0113	4.17

\#	RT [min]	Area	Area Frac. \%
1	3.5	259.4895	99.76
2	3.7	0.6185	0.24

\#	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.5	1.5283	0.75
2	2.7	0.9279	0.46
3	3.0	198.0575	97.77
4	3.2	0.3209	0.16
5	3.4	1.7361	0.88

\#	RT [min]	Area	Area Frac. \%
1	3.1	0.4491	0.44
2	3.2	0.2947	0.29
3	3.4	101.9898	98.83
4	3.5	0.4592	0.45

\#	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	3.5	125.0875	99.83
2	3.6	0.2122	0.17

$\#$	RT [min]	Area	Area Frac. \%
1	3.2	1.0299	0.54
2	3.4	187.8594	99.16
3	3.5	0.5648	0.30

$\#$	RT [min]	Area	Area Frac. \%
1	3.2	1.8064	5.37
2	3.4	0.4938	1.47
3	3.5	31.2292	92.77
4	3.5	0.1344	0.40

\#	RT [min]	Area	Area Frac. \%
1	2.9	0.9737	0.26
2	3.1	372.0209	99.62
3	3.4	0.4306	0.12

$\#$	RT [min]	Area	Area Frac. \%
1	2.6	1.3549	1.11
2	3.0	18.8392	15.46
3	3.1	100.5997	82.54
4	3.2	1.0852	0.89

$\#$	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.1	1.5363	2.03
2	3.0	74.1974	97.97

\#	RT [min]	Area	Area Frac. \%
1	2.7	3.9337	2.97
2	3.3	128.5693	97.03

\#	RT [min]	Area	Area Frac. \%
1	1.9	1.5598	3.41
2	2.7	1.0015	2.19
3	2.7	0.4513	0.99
4	3.4	42.7925	93.42

\#	RT [min]	Area	Area Frac. \%
1	2.9	127.9425	98.95
2	3.4	1.0138	0.78
3	3.4	0.3495	0.27

$\#$	RT [min]	Area	Area Frac. \%
1	2.9	0.8775	0.76
2	2.9	0.7140	0.62
3	3.0	1.6711	1.45
4	3.1	0.6612	0.57
5	3.2	4.0475	3.52
6	3.5	106.5790	92.61
7	3.6	0.5377	0.47

\#	RT [min]	Area	Area Frac. \%
1	2.9	98.9864	99.32
2	3.1	0.1514	0.15
3	3.6	0.5250	0.53

$\#$	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.9	0.2494	0.52
2	3.1	0.4983	1.05
3	3.2	46.6678	97.96
4	3.3	0.2251	0.47

$\#$	RT $[\mathbf{m i n}]$	Area	Area Frac. \%
1	2.9	5.6436	6.81
2	3.5	0.9238	1.11
3	3.6	76.3489	92.08

\#	RT [min]	Area	Area Frac. \%
1	3.0	0.6588	0.20
2	3.1	8.4135	2.58
3	3.2	315.5255	96.91
4	3.3	1.0018	0.31

$\#$	RT [min]	Area	Area Frac. \%
1	1.8	1.6161	0.68
2	2.9	229.7368	96.95
3	3.2	5.6225	2.37

References

1. Kolb, P.; Kipouros, C. B.; Huang, D.; Caflisch, A. Structure-based tailoring of compound libraries for high-throughput screening: Discovery of novel EphB4 kinase inhibitors. Proteins 2008, 73, 11-18.
2. Zhao, H.; Dong, J.; Lafleur, K.; Nevado, C.; Caflisch, A. Discovery of a Novel Chemotype of Tyrosine Kinase Inhibitors by Fragment-Based Docking and Molecular Dynamics. ACS Med. Chem. Lett. 2012, 3, 834-838.
3. Kolb, P.; Caflisch, A. Automatic and Efficient Decomposition of Two-Dimensional Structures of Small Molecules for Fragment-Based High-Throughput Docking. J. Med. Chem. 2006, 49, 73847392.
4. Majeux, N.; Scarsi, M.; Caflisch, A. Efficient electrostatic solvation model for proteinfragment docking. Proteins 2001, 42, 256-268.
5. Scarsi, M.; Apostolakis, J.; Caflisch, A. Continuum Electrostatic Energies of Macromolecules in Aqueous Solutions. J. Phys. Chem. A 1997, 101, 8098-8106.
6. Scarsi, M.; Apostolakis, J.; Caflisch, A. Comparison of a GB Solvation Model with Explicit Solvent Simulations: Potentials of Mean Force and Conformational Preferences of Alanine Dipeptide and 1,2-Dichloroethane. J. Phys. Chem. B 1998, 102, 3637-3641.
7. Yesselman, J. D.; Price, D. J.; Knight, J. L.; Brooks, C. L. MATCH: An Atom-Typing Toolset for Molecular Mechanics Force Fields. J. Comput. Chem. 2012, 33, 189-202.
8. Im, W.; Beglov, D.; Roux, B. Continuum Solvation Model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 1998, 111, 5975.
9. Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545-1614.
10. Baldwin, J. E.; Cianciosi, S. J. Syntheses of Racemic and Both Chiral Forms of Cyclopropane-1,2-D(2) and Cyclopropane-1-C-13-1,2,3-D(3). J. Am. Chem. Soc. 1992, 114, 9401-9408.
11. Benatti, L.; Fariello, R.; Salvati, P.; Pellicciari, R.; Caccia, C. Newron Pharm. Spa. 2004, EP1424333 (A1).
12. Voitekhovich, S. V.; Vorobiov, A. N.; Gaponik, P. N.; Ivashkevich, O. A. Synthesis of new functionally substituted 1-R-tetrazoles and their 5-amino derivatives. Khim Geterotsikl+ 2005, 11741179.
13. Bridger, G.; Skerlj, R.; Kaller, A.; Harwig, C.; Bogucki, D.; Wilson, T. R.; Crawford, J.; McEachern, E. J.; Atsma, B.; Nan, S.; Zhou, Y.; Schols, S.; Smith, C. D.; Fluri, M. R. D. Chemokine receptor binding heterocyclic compounds 2002, US2002147192 (A1).
14. Wydysh, E. A.; Medghalchi, S. M.; Vadlamudi, A.; Townsend, C. A. Design and Synthesis of Small Molecule Glycerol 3-Phosphate Acyltransferase Inhibitors. J. Med. Chem. 2009, 52, 3317-3327.
15. Feutrill, J.; Leriche, C.; Middlemiss, D. Fovea Pharmaceuticals 2013, WO2013037705 (A2).
16. Meng, L.; Cheng, Q. G.; Kim, C.; Gao, W. Y.; Wojtas, L.; Chen, Y. S.; Zaworotko, M. J.; Zhang, X. P.; Ma, S. Q. Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Custom-Designed Metalloporphyrin Linker. Angew. Chem. Int. Ed. 2012, 51, 1008210085.
17. Zhao, G. Z.; Chen, L. J.; Wang, W.; Zhang, J.; Yang, G.; Wang, D. X.; Yu, Y.; Yang, H. B. Stimuli-Responsive Supramolecular Gels through Hierarchical Self-Assembly of Discrete Rhomboidal Metallacycles (vol 19, pg 10094, 2013). Chem. Eur. J. 2013, 19, 12923-12923.
18. Singh, R.; Zhou, H. Mass tags for quantitative analysis 2002, US2002164649 (A1).
19. Pamukcu, R.; Piazza, G. A. Method of treating a patient having precancerous lesions with phenyl quinazolinone derivatives Cell Pathways Inc. 2003, US6562830 (B1).
20. Wensbo, D.; Louise, E.; Methvin, I.; McLeod, D. A.; Slassi, A.; Xin, T.; Stormann, T. M. Astrazeneca AB., NPS Pharma Inc. 2005, WO2005066155 (A1).
21. Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S.

Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell 2012, 149, 214-231.
22. Kabsch, W. Automatic Processing of Rotation Diffraction Data from Crystals of Initially Unknown Symmetry and Cell Constants. J. Appl. Crystallogr. 1993, 26, 795-800.
23. Bailey, S. The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallogr. D 1994, 50, 760-763.
24. Mccoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658-674.
25. Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L. W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 2002, 58, 19481954.
26. Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y. C.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Selective inhibition of BET bromodomains. Nature 2010, 468, 1067-1073.
27. Saitou, N.; Nei, M. The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406-425.
28. Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins Academic Press: New York, 1965; pp 97-166.
29. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725-2729.
30. Ferguson, F. M.; Fedorov, O.; Chaikuad, A.; Philpott, M.; Muniz, J. R. C.; Felletar, I.; von Delft, F.; Heightman, T.; Knapp, S.; Abell, C.; Ciulli, A. Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain. J. Med. Chem. 2013, 56, 10183-10187.
31. Velazquez-Campoy, A.; Freire, E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 2006, 1, 186-191.
32. Fabian, M. A.; Biggs, W. H.; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias, J. M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A small moleculekinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005, 23, 329-336.
33. Quinn, E.; Wodicka, L.; Ciceri, P.; Pallares, G.; Pickle, E.; Torrey, A.; Floyd, M.; Hunt, J.; Treiber, D. Abstract 4238: BROMOscan - a high throughput, quantitative ligand binding platform identifies best-in-class bromodomain inhibitors from a screen of mature compounds targeting other protein classes. Cancer Research 2013, 73, 4238.
34. Fedorov, O.; Lingard, H.; Wells, C.; Monteiro, O. P.; Picaud, S.; Keates, T.; Yapp, C.; Philpott, M.; Martin, S. J.; Felletar, I.; Marsden, B. D.; Filippakopoulos, P.; Muller, S.; Knapp, S.; Brennan, P. E. [1,2,4]Triazolo[4,3-a]phthalazines: Inhibitors of Diverse Bromodomains. J. Med. Chem. 2014, 57, 462-476.
35. Rooney, T. P. C.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Cortopassi, W. A.; Hay, D. A.; Martin, S.; Tumber, A.; Rogers, C. M.; Philpott, M.; Wang, M. H.; Thompson, A. L.; Heightman, T. D.; Pryde, D. C.; Cook, A.; Paton, R. S.; Muller, S.; Knapp, S.; Brennan, P. E.; Conway, S. J. A Series of Potent CREBBP Bromodomain Ligands Reveals an Induced-Fit Pocket Stabilized by a Cation-pi Interaction. Angew. Chem. Int. Ed. 2014, 53, 6126-6130.
36. Hay, D. A.; Fedorov, O.; Martin, S.; Singleton, D. C.; Tallant, C.; Wells, C.; Picaud, S.; Philpott, M.; Monteiro, O. P.; Rogers, C. M.; Conway, S. J.; Rooney, T. P. C.; Tumber, A.; Yapp, C.; Filippakopoulos, P.; Bunnage, M. E.; Muller, S.; Knapp, S.; Schofield, C. J.; Brennan, P. E. Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains. J. Am. Chem. Soc. 2014, 136, 9308-9319.
37. Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 2004, 9, 430-431.
38. Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881-890.

[^0]: *To whom correspondence should be addressed. Phone: (41) 446353945. Fax: (41) 446353948
 E-mail: cristina.nevado@chem.uzh.ch, caflisch@bioc.uzh.ch
 \dagger Dept. of Chemistry
 \ddagger Dept. of Biochemistry

