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1 Progress variables

Three progress variables are used to monitor the aggregation process: the size
of the largest aggregate Nla, the number of monomers in the β-state within
the largest aggregate Nβ

la, and the number of protofilaments in the largest
aggregate Npf

la . Nla is defined as:

Nla(t) = max
I
NI(t)

where NI is the aggregation number of aggregate I present at time t in the sim-
ulation box. Note that the range of Nla is limited by the size of the simulated
system (1 ≤ Nla ≤ 125). The number of π monomers within the largest aggre-
gate Nπ

la is the difference between Nla and Nβ
la. The number of protofilaments

within a single aggregate is calculated by counting the files of monomers in the
β-state with intermolecular dipolar interactions. Let Nf be the number of such
files present into a given aggregate, and ω1, . . . , ωNf

the number of monomers
in each file (with ωi > 10 to reduce noise). The number of protofilaments in
aggregate a, Npf

a , is thus defined as:

Npf
a =

(∑Nf

i=1 ωi
)2

∑Nf

i=1 ω
2
i

(1)

This definition prevents from counting small isolated files whose formation
is a result of thermal fluctuations, enhancing the signal to noise ratio with
respect to Nf . Two limiting cases are useful to explain this variable. In the
case that all files have the same size (i.e., ω1 = ... = ωNf

), the protofilament
number Npf

a is equal to the number of files Nf . In the case where a single ωi
predominates (ωi >> ωk for all k different from i) Npf

a tends to 1. The number
of protofilaments in the largest aggregate Npf

la is thus the function Npf
a applied

to the largest of all aggregates present in the simulation volume.
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2 Aggregation state fingerprints

The number of protofilaments Npf determines the entries of the fingerprint:
N la
pf =0 or 1, (N la, N la

β ); N la
pf =2 or 3, (N la

pf , Nπ, P1); N la
pf ≥ 4, (N la

pf , P1, Imin).
Example of fingerprint timeseries (dE=-2.5) with time from top to bottom.
The values of P1 and Imin are multiplied by 100 and 50, respectively, and
discretized.

Kinetic phase Finger print Aggregate types

N Nbeta Npf Npi P1 Imin

Lag phase --2---0------------------ small oligomers

--4---0------------------

--3---0------------------

--2---0------------------

.......

-17---1------------------ M

-17---0------------------

-17---0------------------

-17---0------------------

-17---0------------------

-15---0------------------

-17---3------------------

Nucleation .......

.......

Protofibrils ----------2--37--72------ 2PP

----------2--40--73------

----------2--38--74------

----------2--39--74------

----------2--42--72------

.......

----------3--22--29------ 3PP

----------3--23--28------

----------3--24--28------

----------3--24--27------

----------3--25--27------

.......

Mature Fibril ----------4------15--81-- 4PF1

----------4------15--81--

----------4------15--81--

----------4------15--81--

----------4------16--82--

----------4------16--82--

----------4------17--81--

----------4------17--81--

----------4------16--81--
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3 Stability of morphologies.

dE [kcal/mol] Morphology Cr [mM] ∆g [kcal/mol]

-2.5 4PF1 2.61 ± 0.12 -3.66

4PF2- 2.05 ± 0.17 -3.81

4PF2+ 1.59 ± 0.14 -3.96

-2.25 4PF1 1.59 ± 0.15 -3.96

4PF2- 1.21 ± 0.11 -4.13

4PF2+ 0.98 ± 0.08 -4.26

-2.0 4PF1 1.10 ± 0.09 -4.19

4PF2- 0.96 ± 0.13 -4.28

4PF2+ 0.77 ± 0.14 -4.41

-1.5 4PF1 0.46 ± 0.07 -4.73

4PF2- 0.42 ± 0.04 -4.79

4PF2+ 0.34 ± 0.06 -4.92

Table S1
Stability of morphologies calculated at different dE values. Morphology

dependent critical concentration Cr and free energy of monomer association ∆g are
reported for four values of the amyloidogenic potential dE.
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4 Simple examples to illustrate basin-isolation procedure.

Fig. S1. Simplified graph generated from a 2D-potential, example 1. (A) An energy potential

with 8 wells is created on a 100 × 100 grid of x and y values (every isoenergetic level corresponds to

1 kcal/mol). A total of 100 trajectories are run using the Metropolis Monte Carlo algorithm at 310 K

starting from the x=25 and y=25 state (belonging to the bottom left basin). The simulations are stopped

after a fixed amount of Monte Carlo iterations that doesn’t allow a reversible exploration of the complete

landscape to simulate an out of equilibrium process. From left to right and from bottom to top, the basins are

increasingly more stable, and are separated by potential energy barriers of 3-4 kcal/mol, with the exception

of the starting basin, that has a high exiting barrier (10 kcal/mol), to mimic a rare nucleation process

followed by a downward exploration of basins, as in the case of fibril formation. The potential is shaped

to have two parallel pathways from the starting basin to the most stable basin (top right). (B) The time

series of the x-y values are coarse-grained for the mfpt cFEP calculation, and the iterative procedure of free

energy basin detection described in the main text is applied. At iteration 0, the cFEP is calculated from the

most populated x-y state. All the states with ZA/Z lower than the value of the first barrier are assigned to

basin 1 and removed. The new reference state is the first minimum after the first barrier. At every iteration

the previously defined basin is removed, resulting in a reduced cFEP (the cFEPs are shifted upward along

the y-axis to improve readability). (C) To test whether the state-basin assignment is correct, the x-y states

sampled by the trajectories are colored according to the basin they belong to. The resulting plot reflects

the original potential energy and the correct partitioning of states into basins. (D) The simplified graph of

the inter-basin transitions is constructed based on the original x-y state trajectories. The area of the node

is proportional to the statistical weight of the basin. The oriented black links correspond to the back and

forward transitions, the red link is the difference between back and forward transition. The thickness of the

links is proportional to the number of transitions. The topology of the simplified graph correctly describes

the two parallel pathways, that start from basin 1 and end in basin 5. The statistical weight of the nodes is

not proportional to the actual potential energy of the basins, as the trajectories are out of equilibrium. In

fact, the most visited node is the basin 1, as it is the starting state and it has a high exiting barrier.
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Fig. S2. Simplified graph generated from a 2D-potential, example 2. (A)
In this second example the 2D potential has 5 wells arranged in a cross shape.
From left to right and from bottom to top, the basins are increasingly more stable,
and the barriers are about 5 kcal/mol. A total of 100 trajectories are run using
the Metropolis Monte Carlo algorithm at 310 K from the starting state (x=25 and
y=25, belonging to the bottom left basin). (B) The iterative procedure of free energy
basin detection is applied. (C) The explored states are colored according to the mfpt
cFEP basins they belong to. (D) The simplified graph of the inter-basin transitions.
The area of the node is proportional to the statistical weight of the basin. The
oriented black links correspond to the back and forward transitions, the red link is
the difference between back and forward transition. The reaction starts from basin
5 and proceeds through basin 2 (the central well of the potential) to basin 1. Basin
1 is the most populated and is isolated first by the iterative procedure.
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5 Structural characterization of fibril morphologies.

Fig. S3. 2D histograms of P1 and Imin. Two-dimensional frequency histograms
of the order parameter P1 and the minimum inertia moment calculated at four dE
values. Highest frequency is colored with yellow.

S8



6 Interconversion between 4PF1+ and 4PF1-.

Fig. S4. Time series of the minimum inertia moment for three different
morphologies. The time series of the minimum inertia moment of mature fibrils of
different morphology (4PF1, 4PF2+ and 4PF2-) are compared. The value for 4PF1
fluctuates between two values (corresponding to 4PF1+ and 4PF1- subpopulations),
while Imin for 4PF2+ and 4PF2- are stable around the 0.125 and 0.115 values,
respectively.

S9



7 cFEPs for 4PF2+ and 4PF2- morphologies.

Fig. S5. cFEP calculated for 4PF2+ and 4PF2- morphology at four different dE
values. The reference state is the most populated 4PF state. Every state is repre-
sented as a circle, whose color reflects the number of protofilaments. Note that the
x axis is inverted with respect to the conventional representation of cFEP, having
the reference state on the right of the plot.
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8 Simplified networks of interbasin transitions.

Fig. S6. Simplified networks of interbasin transitions. Simplified graphs de-
scribing the process of fibrillation for different potentials and different morphologies.
The size of the nodes is proportional to the statistical weight of the corresponding
cFEP basin, while the thickness of the links is proportional to the number of transi-
tions. The red link is the difference between the forward and backward black links.
The color of the nodes is obtained by mixing four colors: red, blue, green and white
using the statistical weights of the 4PF, 3PP, 2PP and M states that populate the
basin. The node number one is the basin where the simulations starts.

S11



9 3PP protofibrils polymorphism.

Fig. S7. 3PP protofibrils polymorphism. By visual inspection of the trajectories
performed at dE=-2.5, two different 3PP intermediates are observed. 3PP1 and
3PP2 are competent to 4PF1 and 4PF2(+,-) morphologies, respectively. They differ
in the arrangement of the up and down protofilaments with respect to the deposit of
π monomers (represented by blue beads), thus they are indistinguishable by using
the parameter P1. No apparent difference is observed between the protofibrils that
generated 4PF2+ and those that produced 4PF2-.
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10 Chemical master equation of the fibril elongation.

To investigate the behavior of the system beyond the size and time limit
of the Langevin dynamics simulations, a fibril elongation master equation
was developed, based on the nucleated polymerization equation introduced
by Goldstein and Stryer 1 . The dynamic variables of the equations are the
concentration of dissolved monomers m and the concentration of polymers A(I)

n

with size n > 2 and morphology index I=4PF1, 4PF2+, 4PF2-. The model
describes the growing phase of the fibrils with dE=-2.5 after the nucleation
phase and incorporate the competitive growth effects. The model is based on
the following assumptions:

(1) nucleation of fibrils is neglected.

(2) polymers with subnuclear size n < 30 are unstable, i.e. they cannot grow
(this threshold value is chosen according to the measure of stability of fibrils
under membrane-assisted degradation 2 ).

(3) the growth occurs only by monomer addition, thus the self-assembly and
breakage of fibrils is neglected.

(4) fibril intermediates (protofibrils, oligomers) are not taken into account.

(5) the rate of addition of a monomer on a polymer is independent of its size
and morphology.

The equation for the concentration of monomers can be written as:

dm(t)

dt
= −konm(t)

∑
I

F (I)(t) +
∑
I

k
(I)
offP

(I)(t)

Where the kon is the rate of addition of monomers on the aggregates, F (I)(t) =∑
n≥30A

(I)
n (t) is the total concentration of polymers with morphology (I) and

size n ≥ 30, and P (I)(t) =
∑
n≥2A

(I)
n (t) is the total concentration of polymers

with morphology (I) and size n ≥ 2.

The equations for the concentration of aggregates with n > 2 and morphology
I are

dA(I)
n (t)

dt
= k

(I)
off

[
−dA(I)

n (t) + dA
(I)
n+1(t)

]
2 ≤ n ≤ 30

1 R.F. Goldstein, L. Stryer, (1986) Biophys. J. 50 p. 583
2 R. Friedman, R. Pellarin, A. Caflisch, (2010) J. Phys. Chem. Lett. 1 p. 471
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dA
(I)
30 (t)

dt
= k

(I)
off

[
−dA(I)

30 (t) + dA
(I)
31 (t)

]
+ konm(t)A

(I)
30 (t) n = 30

dA(I)
n (t)

dt
= k

(I)
off

[
−dA(I)

n (t) + dA
(I)
n+1(t)

]
+konm(t)

[
A

(I)
n−1(t)− A(I)

n (t)
]

n > 30

The rate constants of monomer addition kon and unbinding k
(I)
off are evaluated

from the simulations. For dE=-2.5, the rate of monomer addition kfibril is
0.012 ns−1 ( 3 ), which divided by the average concentration of monomers in
equilibrium with the fibrils Cr

F = 2.5mM ( 4 ) yields the rate constant kon =
4.8 ·10−3ns−1mM−1. The morphology dependent rates of monomer unbinding
are obtained from the dissociation constants K

(I)
d ( reported as concentration

Cr in Tab. S1), and k
(I)
off can be obtained as kon ·K(I)

d , yielding for 4PF1, 4PF2-
and 4PF2+ the values 0.012, 0.0098 and 0.0075 ns−1, respectively.

The initial concentrations A(I)
n (0) and m(0) were derived from the final part

of the 100 nucleation simulations (see Fig. S8). The master equations are
numerically integrated using the Heun’s predictor corrector method.

The time-dependent numerical solutions of the equations are reported in Fig.
S8 for dE=-2.5 potential, and show that given the initial mixture of fibril
morphologies, obtained from the Langevin simulations, only the 4PF2+ (i.e.,
the morphology with the lowestKd) remains at the end. Nevertheless, there are
long kinetic phases(40-150 µs) where the three or two different morphologies
coexist.

3 R. Pellarin, E. Guarnera, A. Caflisch, (2007) J. Mol. Biol. 374 p. 917
4 R. Pellarin, A. Caflisch, (2006) J. Mol. Biol. 360 p. 882
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Fig. S8. Solutions of the master equation of fibril elongation for dE=-2.5.
(Left) Time dependent concentration of monomers either dissociated or associated
to fibrils of different morphologies. (Right) Time dependent concentration of aggre-
gates of variable size and distinct morphologies. The curves are calculated every
10 µs and shown by thin black lines except for the 40 and 60 µs curves which are in
green and red, respectively. The initial concentrations of aggregates obtained from
the Langevin dynamics simulations are displayed as bold black curves.
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11 Simulation of morphologies coexistence.

Fig. S9. Simulation of morphologies coexistence. (Left) Four 4PF1, three
4PF2+ and one 4PF2- mature fibrils obtained from nucleation simulations at
dE=-2.5 are placed together in a box and simulated. The total amount of monomers
is 1000. Note that the number of fibrils of different morphologies reflects the nu-
cleation ratio discussed in the main text. During the simulation, the 4PF1 fibrils
shrink and disappear. (Right) After 2 µs, the 4PF1 fibrils have disappeared, and
4PF2+ and 4PF2- morphologies merge together into a bundle of fibrils.
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12 Oligomer size histogram.

Fig. S10. Oligomer size frequency histogram calculated for dE=-2.5 at the lag phase,
when micellar oligomers M are in equilibrium with monomers. The value N=7
separates the small oligomers from the micelles. The hystogram is calculated as the
probability that a monomer is in an oligomer of size N .
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13 Nucleus size.

Fig. S11. Nucleus size calculated at four different values of the β-propensity dE.
The nucleus is defined as the oligomer that has 50% probability to become a fibril.
Details of the nucleus size calculation can be found in R. Pellarin and A. Caflisch,
J. Mol. Biol. (2006) vol 360 p. 882.
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