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Abstract

Quantum mechanical (QM) methods are becoming popular in computational drug design

and development mainly because high accuracy is required to estimate (relative) binding

affinities. For low- to medium-throughput in silico screening, (e.g., scoring and prioritizing a

series of inhibitors sharing the same molecular scaffold) efficient approximations have been

developed in the past decade, like linear scaling QM in which the computation time scales

almost linearly with the number of basis functions. Furthermore, QM-based procedures have

been used recently for determining protonation states of ionizable groups, evaluating energies,

and optimizing molecular structures. For high-throughput in silico screening QM approaches

have been employed to derive robust quantitative structure-activity relationship models. It is

expected that the use of QM methods will keep growing in all phases of computer-aided drug

design and development. However, extensive sampling of conformational space and treatment

of solution of macromolecules are still limiting factors for the broad application of QM in drug

design.

∗To whom correspondence should be addressed
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Introduction

Accurate models for computing the binding free energy between small molecules and proteins are

needed for drug discovery and design.[1] The increasing popularity of quantum mechanical methods

in computer-aided drug design (CADD) is not just a consequence of ever growing computing power

but is also due to the first principle nature of QM, which should provide the highest accuracy.[2, 3]

Because of their first principle nature, both the time-consuming ab initio methods[4] and fast

semi-empirical approaches[5, 6] do not suffer from the limitation inherent to the ball and spring

description and the fixed-charge approximation used in the force fields (FFs). In a recent review,

it has been suggested that the application of QM methods in all phases of CADD is likely to

become reality.[3] At the same time, interest for QM in CADD has spurred further methodological

development of QM methods and in particular QM approaches for docking, scoring, improvement of

known lead compounds, and unraveling the reaction mechanism. As an example, QM calculations

were performed to investigate significant differences in binding affinities upon modification of a

−CH2− linker into a carbonyl.[7]

In the following sections, we will classify the QM methods into two broad classes according to

their functionalities: the first class includes the methods used for quantifying energies and optimizing

structures, while the second contains the techniques employed for calculating molecular properties.

The methods in the first class are the conventional and straightforward applications of QM. They

can be directly exploited for interpreting the reactivities of biologically active molecules, which are

always accompanied by the transfer of energy and transformation of molecular structures. However,

the currently available computating power is not enough for the direct ab initio QM calculations of

macromolecules with accuracy similar to that of in vitro experiments. Therefore this section will

unavoidably give the prominence to the acceleration of QM methods for macromolecules, including

linear scaling algorithms and hybrid quantum-mechanics/molecular-mechanics (QM/MM). Apart

from the methods for calculating the energies and optimizing structures of biomolecules, we also

illustrate two typical applications of QM relevant to structure-based drug design: the analysis of the

protonation states of titratable side chains[8, 9] and the evaluation, with high structural and energetic
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accuracy, of cation-π and π-π interactions that are beyond the limits of classical FF methods. The

methods in the second class are mainly used for calculating specific properties of molecules, such

as partial charges, bond strength, and torsion angles which can be applied in the parameterization of

FFs, and other descriptors that can be used in building quantitative structure-activity relationship

(QSAR) models or quantitative structure-property relationship (QSPR) models. We also discuss

recent advances in two emerging topics: molecular quantum similarity and variational particle

number approach for molecular design.

Using QM to calculate energies and optimize structures

QM is preferable to classical FF based methods for accurate energies and electronic structure

calculations,[2, 3] and even for examining the potential energy hypersurface of small molecules.[10]

Recently, Butler and coworkers used QM-based methods to describe both the internal energy of

the ligand and the solvation effect.[11] Their analysis indicates that two thirds of the bioactive

conformations of small-molecule inhibitors lie within 0.5 kcal·mol−1 of a local minimum, and

conformations with penalties above 2.0 kcal·mol−1 are generally attributable to inaccuracies in

structure determination. However QM can only be applied to molecular systems of limited size, so

that QM has to be simplified to adapt to the available computational power, e.g., apply pure QM to a

small subset of atoms and polarizable continuum model to emulate the protein and the solvent,[12]

or use accelerated techniques which will be mentioned in the following sections.

Linear scaling QM methods

The computational time of QM ranges from N3 (semi-empirical) to N5 (second order Møller-Plesset

perturbation theory (MP2) and other post-Hartree-Fock (HF) methods), where N is the number

of basis functions.[13] Linear scaling quantum mechanics (LSQM) has been applied extensively

for the evaluation of binding enthalpy between small molecules and proteins.[2, 3] In LSQM, the

computing time scales with N2 or even N if the local character of chemical interactions is fully
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exploited.[14–18] In the divide-and-conquer (D&C) approach, one of the typical LSQM techniques,

a large system is decomposed into many subsystems, and the density matrix of each subsystem is

determined separately. Finally contributions of individual subsystems are summed to obtain the

total density matrix and energy of the system (Figure 1).[15–17, 19] Raha and Merz developed

a semi-empirical D&C-based scoring function[18] and studied the ion-mediated ligand binding

process. Their study shows that QM is needed for metal-containing system, because the atom types

and parameters of metal atoms in most classical FFs are not accurate enough to describe the nature

of the interactions between a small molecule and a metal ion in the active site.[20]

We have suggested the use of a semi-empirical D&C strategy as an improvement of the linear

interaction energy model with continuum electrostatic solvation (LIECE).[21] The new method

QMLIECE was compared to LIECE by application to three enzymes belonging to different classes:

the West Nile virus NS3 serine protease (WNV PR) , the aspartic protease of human immunodefi-

ciency virus (HIV-1 PR), and the human cyclin-dependent protein kinase 2 (CDK2).[19] Our results

indicate that QMLIECE is superior to LIECE when the inhibitor/protein complexes have highly

variable charge–charge interactions, as in the case of 44 peptidic inhibitors of WNV PR, because of

the variable polarization effects (Figure 2) which are captured only by QMLIECE (Figure 3).

Localized molecular orbital (LMO) theory is an LSQM approach in which occupied-virtual

interactions involving distant LMOs are neglected, i.e., only density matrix and energies of LMOs

that belong to a limited number of atoms need to be calculated.[28] Used as a scoring function in

virtual screening, however, LMO theory is still not fast enough for evaluating all poses of small

molecules generated by docking. Therefore, Vasilyev and Bliznyuk, performed QM implemented in

MOZYME[28] based on LMOs only for the 10 – 100 top binders predicted by simplified scoring

functions.[29] By comparing the results with and without solvation they pointed out that although

QM was able to provide more accurate enthalpy values, the solvation model needed to be improved.

Anikin and coworker developed another linear-scaling semi-empirical algorithm based on LMOs

named LocalSCF.[30] The method resolves the SCF task through the finite atomic expansion of

weakly nonorthogonal localized molecular orbitals. The inverse overlap matrix arising from the

4



Curr Top Med Chem. 2010;10(1):33–45.

CH

R1

C
O

H3N

H
N

H
C

O
C

R2

N
H

CH
C
O

R3

H
N

H
C

R4

COO

CH

R1

C
O

H3N

H
N

CH3

H
C

R2

O
C

H
N

N
H

CH3

C
O

H3C

CH

R3

C
O

N
H

H
N

CH3

O
C

H3C

H
C

R4

COO
H
N

C
O

H3C

H3C
C
O

H
N

CH3

=
+
+
+
-

H3C

O
C

N
H

CH3-
H3C

C
O

H
N

CH3-

Protein

Capped residues of protein

Caps

A1C1*

N2A2C2*

N3A3C3*

N4A4*

N2C1

N3C2

N4C3

Figure 1: D&C protocol[15] for calculation of QM interaction energy between a protein and a
small molecule (ligand). The interaction energy between a protein with m residues and the ligand is
decomposed into

Eligand-protein = Eligand-A1C1 +Eligand-N2A2C2 + . . .+Eligand-Nm−1Am−1Cm−1 +Eligand-NmAm

−Eligand-N2C1 −Eligand-N3C2 − . . .−Eligand-NmCm−1

where Ni and Ci are N terminal and C terminal cap, respectively, of residue Ai. The fragments with
blue names are protein residues with conjugate caps,[17] while the ones with red names are pure
“caps” that have to be subtracted to remove the duplication in energy calculation.[19] This figure is
reprinted from Ref.19 with permission of ACS.
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e
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Figure 2: Polarization of protein atoms due to inhibitor binding: WNV PR, whose carbons are in
green, in complex with a peptidic inhibitor, whose carbons are in cyan. The polarized charges were
calculated by subtracting self-consistent field (SCF) atomic charges before binding from that after
binding, using the D&C protocol (see Figure 1).[15] The protein surface was rendered with the
blue-white-red spectrum according to polarized charges of atoms. The blue color on the surface
denotes atomic partial charges that become more positive upon binding, while red color means
more negative atomic charges upon binding, and white color indicates atomic charges which do not
change upon binding.
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Figure 3: Comparison of the calculated (QMLIECE filled symbols, LIECE empty symbols) versus
experimental binding free energies for 44 WNV PR[22–24] (top left), 24 HIV-1 PR[25] (top right),
and 73 CDK2[26, 27] (bottom) inhibitors. The experimental data are fitted with two-parameter
models for WNV PR, three-parameter models for HIV-1 PR, and two-parameter models for CDK2.
Digit in parentheses is the total charge of the inhibitor. This figure is reprinted from Ref.19 with
permission of ACS.

7



Curr Top Med Chem. 2010;10(1):33–45.

nonorthogonality of the localized orbitals is approximated by preserving the first-order perturbation

term and applying the second-order correction by means of a penalty function. Furthermore, for

very large systems (> 104 atoms) the performance of LocalSCF is more efficient in CPU time and

memory consumption than MOZYME with the help of the fast multipole method.[31] Based on the

semiempirical variational finite localized molecular orbital approximation, Anisimov and Bugaenko

developed the novel semiempirical QM/QM method in which a part of the system, including the

ligand and protein active site, are treated self-consistently, while the protein bulk is considered as

carrying a frozen electronic density matrix.[32]

QM/MM

The computational procedures based on QM/MM (see also the review article by J. Gascon at page

nnn) combine the strengths of both QM (accuracy) and molecular mechanics (MM) (efficiency)

methods, and are widely employed to model chemical reactions and other electronic processes in

biomolecular systems.[33–43] QM/MM can be used for preparing the structures of small molecules

and proteins, such as optimizing the binding poses obtained from docking,[44] and refining the

geometries of enzyme active sites obtained from a harmonically restrained minimization with

MM,[45] or X-ray structures.[46] It has been suggested that within the drug discovery process

QM/MM is valuable for (1) helping the interpretation of poorly resolved electron density,[46] (2)

probing the details of the interactions within enzymes active sites,[47] and (3) investigating the

effects of different substituents on the binding mode or in the assessment of alternate scaffolds.[48]

QM/MM is also very useful in describing the process of charge polarization and electron

transfer, which is not possible by classical FF methods. Anisimov and coworkers used a QM/MM

docking approach based on variational finite localized molecular orbital approximation to speed

up conventional QM,[30, 31] which took explicitly into account the effects of charge polarization

and intermolecular charge transfer. Gentilucci et al. carried out QM/MM calculation to investigate

the binding mode into the M-opioid receptor and the electronic properties of an atypical agonist,

the cyclic peptide c[YpwFG] which contains aromatic side chains.[44] In their research the highly
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favorable dipole-dipole interaction between the protein and the peptide agonist indicates that ligand

polarization induced by the protein environment contribute noteworthily to the overall binding

energy. Gao and coworkers used docking, molecular dynamics (MD), and QM/MM methods to

study the reaction dynamics between pyrimidine nucleoside phosphorylase and a substrate.[49]

Their results show that catalysis involved residues stabilize the uridine in a high-energy conformation

by electrostatic interactions and the activation of phosphorolytic catalysis stems from polarization

effects. As mentioned above, QM is also appropriate to describe electron transfer. Blumberger

and coworkers applied QM/MM to calculate the free energy profile for peptide bond cleavage.[50]

Zheng and coworkers developed a QM/MM based approach for in silico screening of transition

states of the enzymatic reaction and calculated the activation energy.[51] By this approach they

designed a human butyrylcholinesterase mutant with a 2000-fold improved catalytic efficiency

for therapeutic use as an exogenous enzyme in humans to treat cocaine overdose and addiction.

Wallrapp and coworkers presented docking and QM/MM studies for the electron transfer pathway

between cytochrome P-450 camphor and putidaredoxin.[52]

QM/MM is a powerful instrument of parameterization of FFs for the system containing structural

motifs not adequately described by empirical FFs, such as diverse drug-like molecules,[53] and

metal-containing system.[54] QM/MM can also be used for incorporating polarization effects into a

FF, which enables the qualitative improvement in constructing patterns of hydrogen bonds of the

docked ligand, water structures and dynamics.[55]

QM Simulation

QM simulation is a useful tool for unraveling the mechanism of reactions.[56] In the drug design

field which involves biological macromolecules, QM simulation is often working with the classical

MD simulation.[41, 57] To explain the catalytic pathway of metalloenzyme farnesyltransferase

(FTase), Ho and coworkers exploited the Car-Parrinello MD[58] version of QM(B3LYP density

functional theory (DFT))/MM(Amber FF[59]) dynamics. Their results might be helpful in designing

selective inhibitors of FTase, given the proposed mechanism of the FTase reaction and the inhibition
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by fluorine substituents of farnesyl diphosphate substrate.[60]

QM combined with classical MD is also useful for improving accuracy of interaction energy and

sampling of conformational space. Feenstra and coworkers used semi-empirical QM to calculate

activation energy barriers, and compare substrate activation barriers at different locations from MD

simulations in the enzyme.[61] Alves and coworkers explained the viral resistance of diketo acids

(DKAs) to the integrase of human immunodeficiency virus (HIV-1 IN) N155S mutant by QM/MM

MD simulation.[62] Their decomposition analysis of energy terms shows that there is a strong

interaction between the Lys159, Lys156, Asn155, and Mg 2+ cation and the DKA inhibitor with

complex electrostatic interactions. QM/MM can be used in free energy perturbation (FEP) method.

QM/MM FEP was applied to calculate the relative solvation free energies for a diverse set of small

molecules (root mean square deviation (RMSD)) from experimental data < 1.02 kJ·mol−1).[53]

Using the same method, the > 2000-fold decrease in the affinity for fructose-1,6-bisphosphatase of

an adenosine monophosphate (AMP) analogue (phosphonate 4) compared with AMP was explained

by the absence of hydrogen bonds and the loss of the electrostatic interactions,[63] which were

well described by the QM method.[64] Similarly Khandelwal and coworkers reported that QM/MM

calculated energies for the time averaged structures from MD simulations were able to distinguish

subtle differences in binding affinities of only one order of magnitude (Figure 4).[65, 66] These

methods, however, are very time-consuming, and therefore are not applicable for in silico high

throughput screening at present.

Protonation states

The rapid growth of the number of protein structures determined by X-ray crystallography calls

for robust methods for determining hydrogen positions, in particular for active site residues in

enzymes.[36, 37, 67] Explicit hydrogen atoms are required for most of the structure based drug

design methods,[68] e.g., all-atom MM, MD, docking, and electrostatic calculations. A recent

study reaffirms that the protonation state in the active site influences the ability of scoring methods

to determine the native binding pose.[69] Although other classical methods, e.g., MD[67] and
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Figure 4: Correlations between experimental and calculated inhibition potencies of hydroxamates
vs MMP-9 as obtained by FlexX docking with the zinc-binding-based selection of modes (green),
QM/MM minimization (blue), MD simulation with constrained zinc bonds (red), and by QM/MM
energy calculations for the time-averaged structures from MD simulation (black).[65, 66] This
figure is reprinted from Ref.65 with permission of ACS.

11



Curr Top Med Chem. 2010;10(1):33–45.

MM/Poisson-Boltzmann (PB) surface area,[70] can be used for determining the position of hydrogen

atoms, the prediction of protonation states should be more robust by means of QM because

protonation is related to the formation of the covalent bond between the hydrogen and heavy atom.

There are several studies on the determination of protonation states of protease, e.g., β -secretase

(BACE),[71–74] plasmepsin,[67] and HIV-1 PR.[69, 75] Which of the two aspartates in the catalytic

dyad of BACE (Asp32 or Asp228) is protonated is likely to depend on the presence and type of

inhibitor.[71, 72, 76] Rajamani and coworkers used a LSQM method and the finite-difference PB

method to determine the protonation state and proton location in the presence and absence of an

inhibitor.[72] They performed structural optimization in the region surrounding the catalytic dyad.

Their calculation favors the monoprotonated state of Asp228 in presence of the hydroxyethylene

based inhibitor and di-deprotonated state for the apo enzyme. Yu and coworkers applied the

QM/MM to further refine the X-ray structure of BACE, and observed an energetically favored

monoprotonated configuration of Asp32 by fitting eight refined structures of BACE and an inhibitor

to the observed electron density.[74]

Determination of protonation states of metal-binding sites poses challenges on classical methods.[77,

78] Lin and Lim used a combination of QM and continuum dielectric methods to compute the free

energies for deprotonating a Zn-bound imidazole/water in various zinc complexes.[79] They found

that the protonation state of the His in the Zn-binding site depends on the solvent accessibility of

metal-binding site and Lewis acid ability of the zinc atom. They also suggested that it is critical for

the QM region to include not only the metal’s first-shell interactions, but also the second shell in

QM/MM modeling of metal-binding sites of metalloproteins.[79, 80] A comprehensive review of

Kamerlin and coworkers summarizes the progresses in ab initio QM/MM free-energy simulations

of electrostatic energies in proteins.[41] Their accelerated QM/MM method, which uses an updated

mean charge distribution and a classical reference potential, was benchmarked on the pKa of titrat-

able side chains. For Asp3 in the bovine pancreatic trypsin inhibitor they obtained the deviation

of ∼ 1 pKa unit (1 kcal·mol−1). For Lys102 in T4-lysozyme mutant the deviation was 2.4 pKa unit

(∼ 3 kcal·mol−1). The protonation state of Lys102 may affect the conformation of the protein, since
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it is deeply buried in the hydrophobic surface. Therefore there is much larger likelihood to attain

significant errors in calculation of pKa of its side chain.[81] Compared to the 7 kcal·mol−1 energy

difference required for catalysis, an error of 3 kcal·mol−1 may be acceptable to determine the main

energetic contribution to the reaction.

Cation-π and π-π interactions

Cation-π and π-π stacking interactions play a fundamental role in chemical and biological recognition.[82]

Classical FFs sometimes fail to describe these interactions because of the lack of charge delocal-

ization in fixed-charge models or the particular FF parameters. Even HF methods have limitations

in capturing π-interactions because of incompleteness of electronic correlation.[83, 84] Villar and

coworkers analyzed whether ligand-protein binding enthalpies evaluated by semi-empirical Austin

Model 1 (AM1) are sufficient for use in the rational design of new drugs by comparing with B3LYP

DFT, and MP2 method.[85] They pointed out that with the exception of cation-π interactions the

enthalpies calculated by AM1 correlated well with that by counterpoise-corrected MP2/6-31G(d).

However, the structures calculated by AM1 and DFT do not correlated with that calculated by MP2

consistently. Wu and McMahon applied DFT and MP2 to optimize the structures of the most stable

isomers of protonated Tyr and ammonia or methylamine and to calculate the enhancement of binding

energies due to cation-π interactions. Møller-Plesset perturbation and coupled-cluster methods show

that dispersive forces and electrostatic and exchange-repulsion forces play the primary stabilizing

role in π-stacked complexes.[84, 86, 87] High-level ab initio calculations, including extrapolation

to the MP2 basis set limit and inclusion of a CCSD(T) correction, show that T-shaped and parallel-

displaced configurations are virtually isoenergetic in gas phase, with binding energies of −11.46

and −11.63 kJ·mol−1 respectively, whereas the sandwich structure is less stable at −7.57 kJ·mol−1

(Figure 5),[84] and substituted benzene dimers bind more strongly than unsubstituted benzene.[88]

Hobza and coworkers suggested to model the π-π stacking interactions by MP2 with a medium-

sized basis set with a more diffuse polarization function, i.e., MP2/6 31G*(0.25) where exponents

of d polarization functions are changed into more diffuse 0.25 from 0.8 used in the standard 6-31G*
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basis.[89–92] Because of its computational efficiency, DFT has been used by several groups to

describe π-stacking interactions.[93–97] To attain predicting power similar to high-level ab initio

methods, some researchers have combined HF theory and DFT, and using modest basis sets have

reproduced the potential energy surface of higher level calculations for a number of instances of

π-stacking.[98–100]

(a) (b)

(c)

Figure 5: (a) Sandwich, (b) T-shaped, and (c) parallel-displaced configurations of the benzene
dimer.[84, 88]
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Using QM to calculate molecular properties

It has long been recognized that if one could accurately evaluate the standard free energy change

of complexation of biologically active molecules, it would be possible both to gain a deeper

understanding of molecular recognition in biology, and to shed light onto the first principles design

of pharmaceuticals and other compounds.[101] The currently available computer power does not

allow highly accurate QM calculations of free energies, particularly for proteins and ligands in

solution. Moreover, usage of QM methods in high-throughput docking is prohibitive. Therefore QM

is more suitable to derive models for prediction rather than for the direct evaluation of binding free

energies. Classical FFs and QSAR are examples of compromises between accuracy and efficiency.

QM derived FFs

Due to the large chemical space of molecules, FFs do not include all the parameters required

for describing drug-like molecules.[102] QM is being used routinely in optimizing geometries,

fitting the torsion parameters, and deriving atomic charges for proteins,[103] DNA,[104] and in

particular small molecules.[105–108] Spiegel and coworkers developed a new set of FF parameters

of platinated moiety via a force matching procedure of the classical forces to ab initio forces obtained

from QM/MM trajectories, and extended the classical MD simulation to describe slow converging

rearrangement of dinuclear Pt compounds and DNA duplex.[109] Sugiyama and coworkers used

DFT calculated partial charges and FF parameters for the atoms near the active site, which are

usually significantly polarized, and metal atoms for which FF parameters are not available.[110]

Multipole expansion (ME) is often used in the representation of the molecular electrostatic

potential.[30, 111–113] To account for the effects of charge penetration, the point charges, dipoles,

quadrupoles, and octupoles in ME model need to be damped. The damping strategies are particular

crucial for short-range energies. For example, damping strategies have to be used when ME is

applied on calculation of electrostatic potentials or electric fields on van der Waals (vdW) or solvent

accessible surface of a molecule.[114] Werneck and coworkers suggested a general methodology
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to optimize the damping functions with the ab initio (HF/6-31G** and 6-31G**+) electrostatic

potential.[115]

QM-derived partial charges

In the molecular simulations with fixed charge models, the method used to derive partial charges

influences the computed physical properties and subsequent docking and scoring significantly.[116,

117] Mobley and coworker compared the hydration free energies of small molecules, whose partial

charges are assigned according to different levels of QM, including AM1, HF, DFT, and MP2, by

explicit water MD simulations.[118] They found that AM1 bond charge correction method[119] for

computing charges works almost as well as any of the more computationally expensive ab initio

method. Fischer et al. compared FF-based scoring functions with QM-based scoring functions

by computing binding free energies of eleven ligands to the human estrogen receptor subtype

α (ERα) and four ligands to the human retinoic acid receptor of isotype γ .[120] They found

that the improvement for the complexes with the ERα receptor stemmed from applying classical

electrostatic models partial charges derived by fragment molecular orbital (FMO).[121] Illingworth

and coworkers implemented QM/MM derived induced charges into a classical framework, redocked

12 difficult protein-ligand complexes with AutoDock,[122] and found that there was no significant

improvement in RMSD of the lowest energy structure against the crystal structure but an increment

of the largest cluster size.[123] Pasquini and coworkers explained different binding affinities of

similar compounds to HIV-1 IN by calculating the partial charges of these compounds and attributed

the difference to a poor interaction of the molecules with the divalent metal ions of the active site

due to the electron-withdrawing effect.[7] Instead of using fixed and point-charge model, Wang and

coworkers calculated solvation free energies of 31 small neutral molecules from QM charge density

and continuum dielectric theory (finite-difference PB equation).[124] The QM and PB equations

were solved self-consistently until both the charge and reaction field converged. The calculations

took into account polarized electronic wave function asymmetric distortion, and spreading out of the

electron cloud. In particular, when the solute is treated by QM, part of its electron density penetrates
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into the solvent. The experimentally measured solvation free energies of these molecules spanned a

range of 25 kcal·mol−1. The authors reported root mean square error of only 1.3 kcal·mol−1 upon

tuning a single parameter to shift the calculated values.

QM descriptors in QSAR/QSPR models

The information provided by QM is more accurate than FFs, therefore more robust QSAR models

and/or QSPR models are expected with QM descriptors.[125] Partial charges are the most common

descriptors in QSAR/QSPR models due to their simplicity and informative content. Occhiato and

coworkers employed atomic partial charges derived from DFT electrostatic potential in a CoMFA

model, with which they designed new 5α-reductase 1 inhibitors.[126] Lepp and Chuman applied

LocalSCF calculated atomic charges to build a QSAR model to predict Michaelis-Menten constants,

and attained better correlation than classical QSAR descriptors.[127] Wan et al. found that the net

charge of the atoms and polarizability correlate with biological activity.[128] Furthermore, they

reported that the predictive power of QSAR models derived from DFT charges is higher than from

semi-empirical PM3 charges. Besides partial charges, other QM descriptors are commonly used to

build QSAR/QSPR models. Yamagami and coworkers used various quantum chemical descriptors,

e.g., frontier energy and frontier electron density, which are powerful for describing chemical

reactivity.[129] Their CoMFA method shows that the antimutagenic activities are increased by

electron-withdrawing substituents and also by hydrogen-bonding between 2-hydroxy group and the

receptor. Singh and coworkers developed a QSAR model of derivatives of testosterone with several

QM parameters, e.g., absolute hardness and electronegativity.[130] Pasha and coworkers derived

QSAR models utilizing various QM descriptors to analyze the factors affecting inhibitory potency

for a series of analogues of the MK886 inhibitor of microsomal prostaglandin E2 synthase-1.[131]

These QM models indicate that the steric properties, as well as electrostatic and hydrophobic

interactions are relevant to the inhibitory potency.
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Molecular quantum similarity

Molecular similarity measures have been used in CADD since more than 15 years.[132] Malde

and coworkers have investigated boron analogs of natural peptides by QM to find the secondary

structural preferences and the impact on stability of different substitutions on boron.[133–135]

Recently they have shown that the B(OH)−NH isostere is an interesting surrogate for the pep-

tide bond because of the similar geometry and barrier for rotation around the backbone dihedral

angle ω , as well as stability to proteolytic enzymes.[136] Carbó et al. measured the similarity

of electron density calculated by QM, and developed a novel QSAR descriptor named molecular

quantum similarity measures (MQSM).[137–144] The MQSM relies on the first order electronic

density function as molecular descriptor. Before comparing the similarities of electronic density

functions, approximated functions[145, 146] and a maximization algorithm are needed to obtain

optimal molecular superposition.[147] The MQSM was then used to predict the toxicity[148, 149]

and to describe the substituent effect in an aromatic series traditionally described by empirical

Hammett equation.[144, 150] MQSM also can be applied for classification of molecules using

dendrograms.[151] A further development of MQSM is quantum topological molecular similarity

(QTMS),[152] which is based on the definition of distances between molecules in bond critical point

space.[153, 154] QTMS is very useful to describe pKa of molecules as QSAR descriptors.[155, 156]

Singh et al. suggested the connection between QTMS and relative bond dissociation enthalpies, and

attained good QSAR.[157] Hemmateenejad and Mohajeri used QTMS indices for describing the

quantitative effects of molecular electronic environments on the O-methylation kinetic of substituted

phenols.[158] Their results revealed that the rate constant of esterification of phenols is highly

influenced by the electronic properties of the C2−C1−O−H fragment of the parent molecule, which

can be considered as frontier bonds in the O-methylation reaction. As shown in these examples, the

effects of substitutions are related to the electron density of the bond connecting the scaffolds and

the substituents, such that molecular quantum similarity is suitable for studying substitutive effects.
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Variational particle number approach for molecular design

Chemical space is the high-dimensional molecular space spanned by the astronomical number of

accessible chemical structures. How to sample the chemical space efficiently is always a difficult

problem in de novo drug design. In general terms, compound design efforts usually attempt a

mapping of a given molecular system to the observable of interest. However in structure-based

drug design, the inverse question applies, i.e., which modification of a given compound will result

in a desired molecular property. Two independent research groups have recently addressed this

question. Lilienfeld and coworkers developed an approach that can explore chemical space in

a less heuristic manner by extending the conceptual DFT by the chemical potential for nuclei

(alchemical potential).[159] With their approach, they modified a peptidic inhibitor of an anticancer

target (human X-chromosome linked inhibitor-of-apoptosis-proteins) into a nonpeptidic inhibitor

by optimizing the interaction energy between the inhibitor and the target. Almost at the same

time, Wang and coworkers optimized molecular polarizability and hyperpolarizability using a

similar method. The main idea of these methods is mapping the discrete chemical structures

onto a continuous hypersurface (Figure 6). In this case, enumerating the astronomical number of

discrete chemical structures can be avoided by a systematic optimization of parameters introduced

in the mapping procedure. Up to now, these methods are merely applied for optimizing several

molecular properties e.g., polarizability and hyperpolarizability, which can be calculated by QM

straightforwardly.[160–166] QSAR/QSPR models may bridge the gap between the properties

calculated directly by QM and those that are useful for drug discovery, e.g., high binding affinity and

selectivity to the target, good pharmacokinetics and pharmacodynamics, and low toxicity, so that

the variational particle number approach might become a routine of structure-based drug design.

Conclusion and outlook

Several QM-based methods already play an important role in many phases of CADD, and will have

a stronger impact in the future because of the ever growing computing power and development
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Figure 6: Schematic representation of optimization of molecular properties by a linear combination
of atomic potentials. Bar heights represent electronic polarizabilities for candidate structures. The
optimization of the property is performed on the smooth (hyper)surface (only two degrees of
freedom are denoted). Establishing a well behaved property surface that interpolates among the
realizable molecules is a key aspect of the variational particle number approach.[167] This figure is
reprinted from Ref.167 with permission of ACS.
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of efficient algorithms. The compromise between accuracy and efficiency is a perpetual issue in

the applications of QM methods. It is important to select the most appropriate technique at each

phase of drug development, and QM methods should be selected only if there is a real advantage

with respect to the classical approaches. The initial phase of CADD, e.g., high-throughput docking,

which is useful to identify hit compounds,[168] requires full sampling of conformations of the small

molecules within the protein binding site. Such extensive sampling calls for approximated energy

functions and predicted properties thereof, which are usually calculated by classical FF methods

or fast semi-empirical QM methods. In the subsequent phase, hits have to be optimized to leads

which does not require extensive sampling but high accuracy because of the small differences in

the binding free energy. Therefore QM methods should be applied on the hits to shed light on the

energetics of binding. The QM methods are particularly important to capture charge transfer and

polarization effects, which are usually pronounced in systems containing metal atoms or charged

groups, and/or dispersion forces which play a significant role in the interactions of conjugated π

systems. Importantly, before starting CADD it is necessary to evaluate the status of the project,

which in turn dictates the number and diversity of molecules to be evaluated and the demand of

accuracy, and to select the most appropriate approach accordingly.
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