Small-molecule inhibitors of the m⁷G-RNA writer METTL1

Francesco Nai^a, Maria Paula Flores Espinoza^a, Annalisa Invernizzi^a, Pablo Andrés Vargas Rosales^a, Olga Bobileva^b, Marcin Herok^a, and Amedeo Caflisch^{a,*}

^aDepartment of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland ^bLatvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia

*To whom correspondence should be addressed. Tel: +41 44 635 5521; Email: caflisch@bioc.uzh.ch

Supporting information

Compound number	2D structure	SEED energy (rank)	Residual signal at 1 mM compound concentration (%)	IC50 M1- WDR4 (uM)	HillSlope
		-17.43 (7)	98		
		-25.32 (1)	76		
		-17.19 (8) [S]	80		
		-16.04 (25) [S]	89		
1	$HO \rightarrow HO$	-18.10 (5) [R]	50	144	-0.97

		-16.65 (17)	102		
		-18.67 (3)	82		
2	$N_{H}^{H_{2}}$	-17.56 (6)	46	187	-0.91
	NH_2 $N H_2$	-17.16 (10)	94		

Table S1. In vitro characterization of the nine adenine derivatives identified by the docking campaign on METTL1. The SEED energy is the predicted binding energy in kcal/mol. Where present, the IC50 value is the average of two or more biological replicates, and each biological replicate is the average of two technical replicates. In case of enantiomeric compounds, the enantiomer to which the SEED energy and rank are referred to is specified in square parenthesis.

Compound number	ASINEX code	Structure	Residual signal at 2.5 mM compound concentration (%)	IC50 M1- WDR4 (μM)	HillSlope
	LAS51494822	NH ₂ N N HO N N N N N N N N N N N N N N N N	58		
	LAS 40775464		40	>1000	-2.00

	BDG34071792		20	478 549	-1.35 -1.34
	BDH34001749	H_2N N N N N N N N N N	28	960 586	-1.26 -1.40
	BDH33909967		10	473 555	-1.09 -1.11
5	LAS33909600		1	277	-1.45
	BDG33904788		21	783 634	-1.91 -1.91
4	BDH33920757	$ \begin{array}{c} $	8	212	-1.11
	BDG34073059	NH ₂ N N N N N N N N N O H	68		

	LAS34159697	$H \\ N \\ N \\ N \\ N \\ N \\ N \\ O \\ N \\ S \\ O \\ O$	7	291 271	-1.40 -1.26
3	BDG34159698	$H \\ H \\$	-1	164	-1.24

Table S2. In vitro characterization of the 11 compounds selected after the initial METTL1-WDR4 enzymatic assay screening of the library of adenosine mimics. When present, the IC50 values are from the average of two technical duplicates, except for the compounds reported in the main text (numbered) for which we report the average of at least two biological replicates, and each biological replicate is the average of two technical replicates.

Compound number	Structure	Residual signal at 1 mM compound concentration (%)	IC50 M1-WDR4 (μM)	HillSlope
	HOOC HOOC HOOC HOOC HOOC HOOC	47		
		323		
	N HN S OH OH	82		

11		13	178	-1.01
		38	>1000	-1.60
		55		
	NH ₂ N N N N N N N N	14		
	HO NH2 N N N N N N N N N N N	28	>1000	-1.06
		30	608 579	-1.56 -0.98
		26	419 311	-1.04 -1.21
	HO HO HO HO HO HO HO HO HO HO HO HO HO H	28	393 562	-0.98 -1.33
8		16	52	-1.22
		4	Interferent: reduces the maximal signal to 44% at 400 μM	

	HO HO HO HO HO HO HO HO HO HO HO HO HO H	28	423 413	-1.21 -1.92
		51		
		6	Interferent: reduces the maximal signal to 69% at 100 μM	
	HOOC Br OH OH	30		
	O OH NH2 N N O OH OH NH2	18	Interferent: reduces the maximal signal to 50% at 20 µM	
9		16	61	-1.03
		24		
		32	312 507	-1.19 -1.02
	NH2 N N N N N N N N N N N N N N	9	280 319	-1.16 -0.81

	CI OH NH2 CI OH NH2 OH OH OH	8	Interferent: reduces the maximal signal to 65% at 200 µM	
10		11	78	-1.09
6	HO OH NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2	6	41	-1.01
7		12	47	-1.23

Table S3. Same as Table S2 for the 26 adenosine derivatives screened using the METTL1-WDR4 enzymatic assay. For the compounds with residual signal at 1 mM compound concentration (%) in red the IC50 value could not be calculated.

Figure S1. Dose-response curves for METTL1-WDR4 and the 11 compounds presented in Table 1. The curves come from the average of two or more biological replicates, and each biological replicate is the average of two technical replicates. The error bars represent the standard deviation for the biological triplicates.

Figure S2. Selectivity testings against METTL3-METTL14 for the 11 compounds presented in Table 1. The curves come from the average of two or more biological replicates, and each biological replicate is the average of two technical replicates. The error bars represent the standard deviation for the biological triplicates.

Figure S3. Selectivity testings against METTL16 for the 11 compounds presented in Table 1. The curves come from the average of two biological replicates, and each biological replicate is the average of two technical replicates.

S11

Figure S4. pri-let-7e and METTL1/METTL1-WDR4 complex formation. (A) FRET emission in presence of rG4-let-7e or rG4-let-7e+METTL1. (B) Luminescence emission from the METTL1 enzymatic assay in presence of different combinations of the components. A significant luminescence emission can only be observed when both METTL1-WDR4 and the rG4-let-7e are added to the reaction. (C) Thermal shift of METTL1 and METTL1-WDR4 in presence of rG4-let-7e or 120bp pri-let-7e. (D) Size exclusion profile of METTL1-WDR4 in presence of 120 bp pri-let-7e on a Superdex 200 10/300 GL column (Cytiva). The elution volumes of the first peak correspond to the molecular weight of the pri-let-7e-METTL1-WDR4 and pri-let-7e, respectively. (E) Size exclusion profile after reinjection of the first peak on a Superdex 200 10/300 GL column (Cytiva), the tripartite complex does not dissociate.

Figure S5. Thermal shift of METTL1 (A) and METTL1-WDR4 (B) in the presence of DMSO control (black) or compound **6** (red) which causes thermal stabilization at 1 mM concentration.

Interference in M1-WDR4 enzymatic assay at 100 uM

Interference in M1-WDR4 enzymatic assay at 150 uM

Interference in M1-WDR4 enzymatic assay at 200 uM

Interference in M1-WDR4 enzymatic assay at 300 uM

Figure S6. Interference screening of the compounds. The compounds that decreased by more than 30% the maximal emission (calculated in presence of 100 μ M of sinefungin, which does not interfere with the assay) were excluded. The threshold at 70% is indicated as a red line. The interfering compounds are indicated in Table S3.

Figure S7. Dose-response thermal shift of METTL1 (A) and METTL1-WDR4 (B) in the presence of SAH, sinefungin, and DMSO.

Figure S8. Calculation of representative binding poses for the last 100 ns of each independent simulation. (*Left*) Cartesian coordinates of the heavy atoms for each compound were projected on reduced (principal component) space. Each data point is colored according to time of simulation. (*Right*) Gaussian mixture model cluster assignments per frame (colored by cluster). The centroid point for each cluster (highlighted and numbered in red) was considered as representative pose.

Figure S9. Secondary binding modes of 1 (A), 5(S,S) (B), and 6 (C) as observed in the MD simulations. The carbon atoms of the binders are in orange and those of the protein in white, hydrogen bonds, and salt bridges are represented as yellow dashed lines. The binding mode of SAH (carbon atoms in green) from the crystal structure of the METTL1-SAH complex (PDB code: 70GJ) is shown for comparison.

	70GJ	7PL1
Wavelength	1	1
Resolution range	46.92 - 1.59 (1.647 - 1.59)	40.72 - 1.85 (1.916 - 1.85)
Space group	P 21 21 21	P 43 21 2
Unit cell	63.57 80.46 138.23 90 90 90	128.76 128.76 39.43 90 90 90
Total reflections	781500 (77137)	456918 (41897)
Unique reflections	95912 (9442)	28797 (2783)
Multiplicity	8.1 (8.1)	15.9 (15.0)
Completeness (%)	99.82 (99.40)	99.37 (98.13)
Mean I/sigma(I)	18.42 (1.20)	29.99 (3.13)
Wilson B-factor	24.83	28.46
R-merge	0.0616 (1.509)	0.06876 (0.9389)
R-meas	0.0658 (1.611)	0.07105 (0.972)
R-pim	0.02279 (0.5571)	0.01767 (0.2487)
CC1/2	0.999 (0.608)	1 (0.835)
CC*	1 (0.87)	1 (0.954)
Reflections used in refinement	95783 (9438)	28787 (2783)
Reflections used for R-free	4791 (473)	1441 (139)
R-work	0.1930 (0.3745)	0.1900 (0.2436)
R-free	0.2150 (0.3955)	0.2120 (0.2877)
CC(work)	0.953 (0.625)	0.953 (0.855)
CC(free)	0.937 (0.490)	0.945 (0.755)
Number of non-hydrogen atoms	4092	1897
macromolecules	3425	1647
ligands	86	66
solvent	581	184
Protein residues	425	210
RMS(bonds)	0.007	0.008
RMS(angles)	1.01	0.96
Ramachandran favored (%)	98.8	98.53
Ramachandran allowed (%)	1.2	1.47
Ramachandran outliers (%)	0	0
Rotamer outliers (%)	0.28	0.61
Clashscore	6.24	7.69
Average B-factor	31.22	31.31
macromolecules	29.42	29.99
ligands	42.68	37.26
solvent	40.1	40.99

Table S4. Data collection and refinement statistics for METTL1 in complex with SAH (PDB code: 7OGJ) and METTL1 in complex with sinefungin (PDB code: 7PL1) as generated by phenix.table one. Statistics for the highest-resolution shell are shown in parentheses.

Empower2

Default Individual Report

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 1 of 2 Project Name: Martins Date Printed: 2021.05.19. 11:34:51 Europe/Riga

	RT	Area	% Area	Height
9	9.146	330497	1.68	52883
10	9.250	457505	2.32	77597
11	9.480	36460	0.19	3414
12	9.782	59610	0.30	9893
13	10.332	33978	0.17	3275

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 2 of 2 Project Name: Martins Date Printed: 2021.05.19. 11:34:51 Europe/Riga

Default Individual Report

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 1 of 2 Project Name: Martins Date Printed: 2021.06.08. 9:54:25 Europe/Riga

	RT	Area	% Area	Height
9	8.266	59413	0.40	7663
10	10.756	40564	0.27	5616

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 2 of 2 Project Name: Martins Date Printed: 2021.06.08. 9:54:25 Europe/Riga

Default Individual Report

					SAMP	LE	INF	ORN	ΙΤΑΝ	ΟΝ			
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:		OBV-141 Unknown 5 1 10.00 ul 20.0 Minutes			A S A C P	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:		Olita MeCN_0_100% Processing W2489 ChB W2489 ChB 254nm		n			
	Date Acquired: Date Processed:		2020.12.23. 11:10:16 EE 2020.12.23. 11:51:17 EE										
AU	0.50 0.40 0.30 0.20 0.10					7.194		210.627					
	-0.20 0.00	2.	00	4.00	6.00	8.	00 1 M	10.00 linutes	12.00	14.00	16.00	18.00	20.00
				RT	Area	% Area	Height						
			1	7.194	67545	0.79	15574	1					
			2	8.226	8412372	98.99	1390846	3					
			3	10.627	18204	0.21	3379	9					

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 1 of 1 Project Name: Martins Date Printed: 2020.12.23. 11:52:30 Europe/Riga

Default Individual Report

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 1 of 2 Project Name: Martins Date Printed: 2021.03.16. 18:06:27 Europe/Riga

	RT	Area	% Area	Height
9	8.224	36468	0.17	3006

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 2 of 2 Project Name: Martins Date Printed: 2021.03.16. 18:06:27 Europe/Riga

Reported by User: Olita Report Method: Default Individual Report Report Method ID 5088 Page: 1 of 1

7.818

202515

1.11

29068

Project Name: Martins Date Printed: 2021.04.26. 11:02:43 Europe/Riga

Reported by User: System

Project Name: CLI

Report Method: Default Individual Report Printed 12:44:20 PM 10/9/2020

18763282

453372

97.47

2.36

2313833

40926

2 2.348

3 2.758

Page: 1 of 1