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ABSTRACT: The core task in computational drug discovery is to
accurately predict binding free energies in receptor−ligand systems
for large libraries of putative binders. Here, the ABSINTH implicit
solvent model and force field are extended to describe small,
organic molecules and their interactions with proteins. We show
that an automatic pipeline based on partitioning arbitrary
molecules into substructures corresponding to model compounds
with known free energies of solvation can be combined with the
CHARMM general force field into a method that is successful at
the two important challenges a scoring function faces in virtual
screening work flows: it ranks known binders with correlation
values rivaling that of comparable state-of-the-art methods and it
enriches true binders in a set of decoys. Our protocol introduces
innovative modifications to common virtual screening workflows, notably the use of explicit ions as competitors and the integration
over multiple protein and ligand species differing in their protonation states. We demonstrate the value of modifications to both the
protocol and ABSINTH itself. We conclude by discussing the limitations of high-throughput implicit methods such as the one
proposed here.

1. INTRODUCTION
The discovery of new molecules that bind to macromolecules
of biological and therapeutic interest is a complex task. A great
wealth of data from biochemical and biophysical experiments
have been accumulated in order to support the development of
potent and selective binders of proteins and other macro-
molecules.1 The idea of a high-throughput screen plays an
important role in the drug discovery pipeline.2 While the data
are often difficult to analyze,3,4 the generality of the approach
retains its fundamental appeal. In cases where experimental
assays are unavailable, too expensive, or too unreliable, virtual
screening is a viable alternative.5,6 In particular, the utilization
of existing structural information for both the target and
ligands appears to be able to elevate enrichment rates; see
Marchand et al.7 for an example. Dozens of software packages
for docking have been developed since the 1980s, along with
an even larger number of scoring functions.6,8−11 The
computational efficiency of these programs continues to be a
point of emphasis because the growth in computational
resources is offset by a similar growth in the available chemical
space.12

The scoring functions implemented in the docking software
aim to choose correct poses and to rank compounds according
to their binding affinities.9 Blind prediction challenges have
shown that they perform reasonably well at the first task, that
is, identify the correct binding pose of an active compound in a
set of decoy poses for the same compound, but often perform

poorly at ranking compounds according to their measured
binding affinities or at distinguishing active compounds from
inactive ones.13,14 To circumvent this limitation, the poses
produced by a primary docking campaign are frequently
“rescored”, that is, a different and putatively more accurate
method is used for predicting the affinity of the compounds to
the target given these poses. Popular rescoring protocols
combine common biomolecular force fields with a continuum
treatment of (de)solvation.15−17 It is of course crucial to
accurately describe the transfer of a ligand from an aqueous
environment to a protein environment in order to reduce the
false positive rate in a virtual screen.18−21

The majority of implicit solvent-based scores calculate the
electrostatic free energy of solvation by solving the Poisson
equation or its Generalized Born (GB) approximation.15,22−24

A major caveat of these models is that they do not account for
the nonpolar contributions to the free energy of solvation.
Correction terms exist, but they show poor correlation with
experimental results, and it is not clear whether they improve
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the quality of binding affinity calculations.25−30 ABSINTH is
another type of implicit solvent model, introduced in 2008,31

which addresses this limitation by a different formalism for the
solvation energy, inspired by EEF1.32 In ABSINTH, the
solvation component is treated as a direct mean-field
interaction (DMFI) between the solute and the solvent and
a partial screening of the interactions between atomic partial
charges. The DMFI is calculated from the partial desolvation of
the reference solvation groups, which carry experimental free
energies of solvation (rFOS). The rFOS values originate from
experimental data, usually vapor pressure experiments. Because
the rFOS are transfer free energies, they include all physical
terms of the solvation energy, that is, conformational entropy,
polar, and nonpolar contributions. Poisson and GB models, on
the other side, calculate solely the polar component of the
solvation energy. In addition, the macroscopic treatment of
electrostatics in these models can be error-prone because of
the requirement to define a sharp boundary between the low-
dielectric medium (solute) and the high-dielectric solvent.33−36

ABSINTH relies on an original description of the solvent
exposure of solvation groups, based on the calculation of
atomic desolvation via solvent-excluded volumes. This
approach removes the requirement to define an explicit
boundary of this type.
The ABSINTH model has been applied with particular

success to other systems where solvation effects are
fundamental. For example, it describes the conformational
equilibria of disordered proteins accurately which are often
predicted as overly collapsed in simulations with other force
fields.37−39 The paradigm underlying EEF1 and ABSINTH has
also been shown to be superior in relative free energy
calculations for proteins,40 and even peptidic systems carrying
many charge groups can be modeled in accordance with
experimental knowledge.41−43 It is a particular feature of
ABSINTH that explicit ions can be part of the simulations.
From these prior applications, it is a straightforward conjecture
that the ABSINTH solvation model might be generalizable to
describe the physics of drug−macromolecule binding. We thus
decided to develop methods to extend the support of
ABSINTH and CAMPARI44 to organic molecules and to
design a protocol that would enable predictions of binding
affinities from the model.
The rest of the manuscript is structured as follows. First, we

briefly summarize the key components of the ABSINTH
model (2.1). Next, we describe the aforementioned develop-
ments and the test data (2.2−2.5) and provide statistics on the
parameterization of small molecules (3.1). Our results
demonstrate that the model is able to rank the affinities of
known binders (3.2) and to identify such molecules from a
pool of decoys (3.3). We finish by discussing further avenues
for improvement (4). Notably, it is not useful to evaluate the
generalized ABSINTH model for its ability to predict rFOS
values of organic molecules, which is a common test for
Poisson-like continuum models.45 This is because ABSINTH
uses experimental rFOS values directly and because a
validation based on solvation energies is not sufficient to
justify the use of a model to rank drug−macromolecule
complexes.30,46

2. METHODS AND THEORY
2.1. ABSINTH Model and Force Field. The ABSINTH

model describes, in an implicit manner, the effects of water on
explicit solutes. The original model focused on polypeptides

but the paradigm generalizes to all chemotypes for which the
following hold. (1) Partial charges are available that can be
grouped reasonably into sets of covalently bound atoms; (2)
the molecules can be decomposed into substructures
corresponding to small molecules with known rFOS values;
(3) the conformational preferences for electronically con-
strained bonds are known or deducible.
To describe the DMFI of water and solute, ABSINTH treats

the solvation process holistically, which is an idea pioneered by
the EEF1 model32
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In eq 1, the ΔGrFOS terms are the rFOS values of the K
solvation groups, each containing J(k) atoms, that the
(macro)molecule has been decomposed into. The λ are weight
factors (usually J(k)−1), while the υf are atomic solvation states.
The latter are computed with generalized sigmoidal functions
from the per-atom fractions of how much of the surrounding
volume is solvent-accessible. We did not change the functional
form or parameters for these equations in the present work,
and the full descriptions can be found as eqs 2−4 for υf, and
Table 1 for the group assignments as well as the λ in the
original work.31 As the ΔGrFOS are experimental free energies,
the DMFI contribution is an effective energy incorporating
solvent entropy terms.
While polypeptides are decomposed into building blocks

straightforwardly by hand, an automatic and general strategy is
needed for the vast chemical space offered by small molecules.
The logic behind the group decomposition is that sufficiently
independent substructures contribute additively to transfer
properties including rFOS values. Thus, the sum of rFOS
values across substructures is the theoretically maximal rFOS
for the entire molecule if all groups were in a fully solvated
state.47−49 Given the available databases of rFOS values,50−53

which have been expanded in recent years primarily through
the SAMPL challenges,54−58 we extend ABSINTH here by a
cheminformatics-based method to parameterize the DMFI for
small molecules (2.2.1 and 2.2.2 below) along with substantial
changes to CAMPARI44 available in version 4 (to be released
in 2020).
ABSINTH uses solvent-accessible volumes not only to

compute the DMFI but also to implement a GB-like correction
to electrostatic interactions31,59
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Equation 2 describes the screened electrostatic interactions
at the resolution of atoms (quadruple sum) or at the resolution
of charge groups (double sum). There are L charge groups in
the system. The number of atoms in each group is denoted as
either X or Y. Atoms have associated properties of q, their
partial charges, of υs, their solvation states for screening, and of
r, their position vectors. The υs are computed in the same way
as the υf in eq 1 but using different mapping parameters. These
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parameters were 0.25/0.1 and 0.5/0.9 for steepness/midpoint
parameters for the υf and υs, respectively. The thickness of the
solvation shell for calculating solvent-accessibility was 5 Å.
These choices are the same as those in the reference
publication.31 Importantly, the υs can be calculated per atom
or averaged across the atoms in each charge group. The former
is the original model and referred to as “atom-based screening”
below. The latter has been used for highly charged
polypeptides41 and is referred to as “group-based screening.”
We evaluate both in this work. The vacuum permittivity and
relative dielectric constant in water are denoted as ε0 and εw,
respectively. The factor slm, which takes values of 0 or 1 and is
conformation-independent, represents the exclusion rules
implemented in ABSINTH. Unlike other force fields, short-
range electrostatic interactions are depleted beyond the normal
exclusion of pairs of atoms separated by two bonds or less, and
this depletion is the origin of a correction we propose here (see
Supporting Information, eq S11 and S.6). Specifically, slm is 1 if
and only if every pair of atoms from charge groups l and m is
separated by at least three bonds that allow the two atoms to
move relative to each other. The last condition is not fulfilled
in rigid rings; for example, see Supporting Information,
Scheme S1. Equation 2 also represents cutoffs: the factor dlm,
which depends on conformation and also takes values of 0 or 1,
skips the atom-based sum if the distance between reference
atoms is larger than 12 Å. The double sum is a correction for
charge groups with net charges Q both different from zero. If
and only if they are not accounted for in the first sum, 1-dlm is
1, and a pointwise monopole interaction is calculated. The
monopole is represented by the atom in the charge group that
is closest to its center of charge (indicated by the subscripts l
and m to υs and r).
Two of the most common biomolecular force fields,

AMBER and CHARMM, have automatic parameterization
pipelines for small molecules, called GAFF60 and CGenFF.61

We describe next how we extend ABSINTH to a general force
field for small molecules reliant on CGenFF.
2.2. Generation of Parameters for Organic Molecules.

2.2.1. Reference Experimental Data. In the ABSINTH
approach, the solute is decomposed into a set of solvation
groups. These groups correspond to model compounds with
an experimentally measured rFOS. The backbone and side
chain units of a protein are a straightforward decomposition of
the polymer. We extended this idea to small molecules by
compiling a database of experimentally measured free energies
of solvation of model compounds. We extracted from the
literature 657 free energies of solvation of neutral organic
compounds, 21 molecules with a negative charge, 42 with a
positive charge, and 49 corrective values.50−58,62−67 Corrective
values originate from the dissection of the experimental
solvation free energies of sets of model compounds into
contributions from individual atoms or minimal functional
groups50 and are necessary to extend the coverage of the
chemical space beyond direct combinations of the 720
molecules of the database, for example, to assign parameters
for small linkers between rings.
2.2.2. Deconstruction of Organic Compounds. The

automatic assignment of reference free energies of solvation
to the small molecules relies on the RDKit,68 here release Q1
2018, for chemistry parsing and on NetworkX, here version
1.11. The algorithm is as follows: (1) identification of all
substructures from the database of rFOS in the target
molecule; (2) creation of a graph, in which each node is a

substructure, with edges connecting all nonintersecting nodes,
that is, nonoverlapping substructures; (3) selection of cliques
that cover the maximum number of atoms in the molecule; (4)
selection of the cliques with the fewest numbers of nodes, that
is, cliques carrying the maximal description of the small
molecule with the minimal count of substructures. If more than
one possibility exists at this stage, we calculate the sum of
hydration free energies for each combination of substructures
and select the combination corresponding to the median sum.
Atoms between fused rings are treated separately. Fusion
atoms can be accounted for by two different substructures that
correspond to the two fused rings, that is, an overlap between
substructures is possible for fusion atoms. If the molecule is
not complete, the last step is to assign corrective values to the
remaining atoms to complete the description of the molecule.

2.2.3. Other Force-Field Parameters. Atomic partial charges
are assigned according to the CHARMM generalized force-
field (CGenFF) paradigm with the CGenFF software.61

CGenFF partial charges are convenient because chemical
groups in the molecule add up as net neutral groups, a feature
that is desirable for the ABSINTH force field. We also tried
AM1-BCC partial charges69 from semi-empirical calculations
with the AMSOL package70 but discontinued their use because
of the lack of efficient net neutral grouping possibilities. Van
der Waals parameters are refined here while maintaining the
spirit of the original ABSINTH publication (see Supporting
Information, S.6).31,43,71 Bonded parameters for simulations in
rigid-body/torsional space are automatically generated from
atom types, connectivity and input geometry information (see
S.1 for details).

2.3. Validation Set for Ranking Experimentally
Confirmed Binders. 2.3.1. Compilation of the Data Set.
The PDBbind database contains complexes of organic
molecules and proteins with high-quality 3D structures and
available binding affinity data. The “refined set” of the
PDBbind is filtered to exclude complexes unfit for training a
scoring function.72,73 Greenidge et al. pruned the PDBbind
refined set further by enforcing a number of additional rules for
testing a GB-based scoring function in 2013.22 This subset was
designed to be as clean as possible for pharmaceutical
applications and contains “drug-like” ligands with binding
affinities to their targets ranging from the low-nanomolar to
high-millimolar ranges. In total, their set contains 855 high-
quality structural and affinity data of drug-like molecules in
complex with proteins. We could not use the entire set for two
main reasons: first, some complexes had to be excluded
because of remaining issues with the structural data in the
binding site (ca. 40), while some had to be excluded because
we could not generate the parameters required for the ligand
(for example, all phosphorous-containing ligands). In the end,
we retained a set of 754 complexes. The data set contains
∼200 different proteins, the rest being proteins that are present
multiple times with different ligands. The median number of
complexes per protein is 1, the average 3.6, and the maximum
139. Eight proteins are present more than ten times in the data
set. The protein with the largest number of ligands is HIV-1
protease, with 139 occurrences, which are not all identical, that
is, some are proteins with mutations in the binding site. This is
followed by trypsin with 63 ligands, thrombin with 32, and so
forth. The complete list of considered PDB codes is provided
as Supporting Information, see S.7. The 754 complexes contain
577 unique ligands. Ligand duplications occur for simple
endogenous ligands such as glutamate (1II5 and 1XFF) or for
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complexes of the same inhibitor to different mutants of the
same protein, for example, HIV-1 protease versus saquinavir.74

2.3.2. Preparation of the Complexes. The complexes were
downloaded from the PDBbind database, including ligands
with bonding information. Nonprotein atoms were removed.
The CHARMM36 force field was used for the parameters of
the protein75 and CGenFF 3.0 for the ligands’ partial
charges.76 Missing atoms were added except those in loops,
which were generally cut. It was a requirement that such
missing loops are far away from the binding site (see 2.3.1).
Reconstructed side chains were relaxed through a two-step
Monte Carlo procedure in the CAMPARI package.44 This
procedure automatically detects dihedral angles subject to high
forces and selectively relaxes them through pivot-style dihedral
angle moves on the respective χ-angles. The conformation of
the backbone was fixed throughout. We performed two such
runs successively with thresholds of 50.0 and 10.0 for keyword
FMCSC_TMD_RELAX in CAMPARI and both using 500
elementary steps per side chain.
2.3.3. Generation of Different Protonation States. Many

complexes in the data set contain buried side chains of
aspartates, glutamates, lysines, and histidines near the ligand,
possibly undergoing protonation state variations that could
strongly influence force field-estimated binding free energies.
All possible protonation states of the aforementioned residues
were enumerated if (1) side chain atoms were close to ligand
atoms, with distance thresholds of 5.1 Å for AspCG, GluCD,
LysNZ, and 6.1 Å for HisCG to any ligand atom; and if (2) their
burial was over 75%, according to propka 3.1.77 These criteria
led to the generation of 7196 protonation states of the 754
proteins (denoted H-mers below), with a minimum of H-mers
per protein of 1, a median of 4, and a maximum of 288. In
addition, 16 ligands had clear ambiguities in their protonation
states, and the 2−3 possibilities per molecule led to a net total
of 7457 protein−ligand H-mer complexes. Equilibrium
populations for the H-mers of these 16 ligands at pH 7 were
estimated with the help of the calculator plugins of Marvin
15.8.17, 2015, ChemAxon (www.chemaxon.com), while for
the rest only the dominant H-mer was retained.
2.3.4. Microscopic Binding Equilibria. For each of the 7457

protein−ligand complexes, we aimed to determine a score
representing the microscopic binding equilibrium between
bound and unbound forms. For ligands featuring moieties
carrying a net charge, we propose here to include a correction
based on the idea of displacing inorganic ions. This means that
the microscopic equilibrium is modified to include explicit
inorganic ions in the unbound state, which are free to occupy
the binding site. Conversely, in the bound state, these ions are
assumed to be in the bulk.
As shown in the results, this idea of a competitive

displacement is required to make the final predicted binding
affinities homogeneous across ligands of different charge. The
revised equation for an estimated binding free energy ΔGb
contains ensemble averages of potential energies. They can be
understood as approximations to the free energy obtained by
truncating the cumulant expansion of the Helmholtz free
energy after the first term.78 The approximation implies a
neglect of explicit entropy terms and looks as follows

G U U
U U

protein/ions ligand complex ions

(complex) (protein/ions)
(ligand) (ions)

b

+ +

Δ ≈ ⟨ ⟩ − ⟨ ⟩
− ⟨ ⟩ +

F

(3)

In eq 3, U is the internal energy, which is the sum of DMFI,
see eq 1, screened electrostatics, see eq 2, bonded, see S.1, and
solute−solute Lennard-Jones terms. U is an effective energy
incorporating solvent entropy term according to the
ABSINTH implicit water model (see 2.1). “Ions” refers to
explicit counterions, for which we use potassium and chloride
ions. The number of these ions present is matched to the
numbers of detected charge groups in the ligand that carry an
integer charge of +1 or −1. Angular brackets indicate ensemble
averages (see below). The last term in the second row of eq 3
is not an ensemble average because we assume a dilute, bulk
reference state for which the ABSINTH energy of simple ions
is known analytically. The procedure is described in detail in
the Supporting Information (S.3).

2.3.5. Data Generation. Equation 3 states that binding free
energies are estimated from ensemble averages of energies of
protein−ligand complexes, proteins (possibly with explicit
ions), and ligands. Of course, it is not feasible to consider all
degrees of freedom, so we required an algorithm that could
sample relevant binding site residues along with the ligand
while keeping everything else fixed. Here, all atoms but those
of the ligand and those in side chains of residues within 6 Å of
ligand atoms were frozen. The ABSINTH paradigm rests on
the assumption that sampling is performed in a rigid-body/
torsional space (see S.1 and S.2). Thus, we used here the
internal coordinate space integrator of Vitalis and Pappu79 as
implemented in CAMPARI. The production data were 10 ps
molecular dynamics (MD) simulations at 250 K, with the latter
half used for deriving the ensemble averages in eq 3. Note that
this is a simulation temperature for an implicit solvent model
undergoing no phase transitions. The value was initially chosen
as a compromise between stability and sampling efficiency but
not optimized thereafter. Prior to the production runs, in very
few cases, an additional Monte Carlo relaxation of side chains
experiencing large forces was triggered (compare 2.3.2). For
complexes and proteins, the probability of simulation crashes
was further reduced by short preproduction runs at 2.5 K
(effective minimization). The data from these preproduction
runs were discarded, and the final structure simply served as
the starting point for the production MD. Additional details
relevant for this protocol are given in the Supporting
Information (see S.2). In few cases, the ligand might move
relatively far away from the binding site even in a 10 ps run.
However, we maintained all data as relevant up to a threshold
of 10 Å (see 3.1).

2.3.6. Calculation of the Apparent pKd. There is only a
single experimental value for the binding affinity of a given
protein−ligand complex. This is in contrast to the individual
microscopic binding equilibria for particular combinations of
H-mers, for which we estimate binding free energies as
described above. We thus need to combine these data. To do
so, we consider the total equilibrium across all bound and
unbound forms of all considered combinations of ligand and
protein H-mers. Once equilibrium concentrations are
determined, the apparent constant can be estimated as follows:

K K

k G k T

( )
P L

L P /ions

P L
L P /ions

exp( / )

I
NP

J
NL

J
NL

J
NL

I
NP

J

IJ
J

obs d,obs
1

b b

I J

J I

I J

J I

* = * =
∑ ∑ [ ]

∑ [ ]∑ ∑ [ ]

* = [ ]
[ ][ ]

= −Δ

−

(4)
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In eq 4, we represent NP protein H-mers (P1, P2, etc.) and
NL ligand H-mers (L1, L2, etc.), and the square brackets
denote concentrations. The asterisks indicate that not all
reference state corrections are applied here, which affect
numerical values but not correlation coefficients. In total, there
are up to NP·NL·2 + NL unique species in the equilibrium for
Kobs* (free ligand H-mers, free protein H-mers, and complexes).
Protein species may be formally multiplied because of
differences in explicit ions, ionsJ, considered for different
ligand H-mers (see 2.3.4 and S.5 in the Supporting
Information for details). Consequently, the double sum in
the denominator will be simplified if the ion sets used for
different ligand H-mers are not all different. Equation 4 implies
a choice of total ligand and protein concentration, which are
free parameters. The remaining parameters required to
calculate the concentrations in eq 4 are individual microscopic
equilibria. Here, we choose three types. The most important
type are the microscopic binding equilibria for specific H-mer
complexes, which connect a unique bound state with its
corresponding unbound state, see 2.3.4. For example, for a
protein H-mer I and a ligand H-mer J, the equilibrium constant
is calculated as kIJ* in eq 4 where ΔGb is calculated from eq 3.
Second, we derive equilibria for conversions between free
ligands derived from Marvin 15.8.17, 2015, ChemAxon (www.
chemaxon.com), see 2.3.3. Third, we use the protein-only
simulations (2.3.5 and S.2) to estimate protonation free
energies for individual protein side chains within the
ABSINTH paradigm. This follows the logic of constant pH
simulation methodologies.80 The method and required
reference data are presented in the Supporting Information,
S.4 and Table S1, respectively.
We developed and used an in-house R script to combine

these microscopic parameters and solve the underlying system
of equations for every complex. This provides us with pKd
values according to eq 4, which we compare, in terms of
ranking and correlation, to their experimental counterparts.
For comparison data obtained with a Poisson model, we could
not follow the same approach as in 2.3.5 and directly above.
Instead, the most likely H-mer in the unbound state in the
ABSINTH model was identified, and a hybrid model was
constructed using electrostatic binding free energy predictions
from single-point Poisson calculations (see Supporting
Information, S.4).
2.4. Validation Set for Predicting Binders. 2.4.1. Com-

pilation and Preparation of the Data Set. We extracted from
the literature 16 ligands of the first bromodomain of
bromodomain-containing protein 4 (BRD4(1)), with binding
affinities, that is, Kd measured with isothermal calorimetry
experiments, ranging from 6 nM to 9 μM, and high-resolution
crystal structures (Table 1). Fifty decoys per active compound
were generated with the DUD-E webserver,81,82 each decoy
having similar physicochemical properties but dissimilar 2D
topology to its corresponding active compound. Decoys were
prepared and placed in the binding pocket of 2YEL similarly to
previous work with bromodomains.7,16,83,84 In short, com-
pound H-mers were predicted by ChemAxon, and conformers
of the 1152 H-mers with an estimated occupancy of at least
25% were generated using the RDKit ETKDG algorithm (50
runs, 0.5 Å of diversity threshold).85 The 41,094 conformers
were docked in the acetylated lysine pocket with rDock (20
runs, with 6 explicit waters),86 leaving after clustering 155,076
docked poses to evaluate with either ABSINTH or a Poisson-
based scoring function. Active compounds with crystal

structures were placed in the binding pocket of 2YEL by
superimposition, with no major clashes arising from this
procedure. For ABSINTH, all poses underwent the molecular
dynamics protocol described in S.2 with the exception that the
protein was rigid. The Poisson procedure is described next.

2.4.2. Estimation of Poisson-Based Binding Free Energies.
The minimization of the binding poses and their scoring was
performed similarly to a previously described protocol,
applicable in the context of a high-throughput docking
campaign.7,16 Explicit water molecules were removed, and
the ligand was minimized for 500 steps of steepest descent and
10,000 steps of conjugate gradient with a convergence criterion
of 0.01 kcal mol−1 Å−1. The protein was fixed throughout.
Here, we used CGenFF 4.0 for the ligand parameters rather
than 3.0 (compare 2.3.2) because of licensing issues. Binding
free energies were evaluated upon minimization as the rigid
approximation of the difference of the energy of the complex
protein−ligand minus the energies of the isolated protein and
isolated ligand. The removal of water molecules was done to
allow a straightforward comparison between the two method-
ologies. The assumed low (protein) dielectric was 4.0.

2.5. Implementation and Availability. The primary
implementation platform for the work in this article is
CAMPARI.44 As mentioned above, version 4 will be made
available in 2020. A stable development version can be
obtained directly from the authors before that. This includes
the parameter updates listed in the Supporting Information,
Tables S3−S7. The decomposition of the organic molecules
(2.4.2) is performed by a Python script and requires a simple
text file with the fragment database (2.4.1) as an additional
input. The script to integrate results for different H-mers is
coded in R and contains the data in Table S1. Along with all of
the aforementioned files, required run input files (shell,
SLURM, and CAMPARI key-files) can be obtained from the
authors upon request.

Table 1. True-Positive Ligands Selected for the Enrichment
Analysis in the Bromodomain BRD(1)a

molecule name PDB code Kd in μM charge refs

I-BET858 5ACY 0.006 +1 87
I-BET-151 3ZYU 0.009 0 88
RX37 4Z93 0.012 0 88
I-BET726 4BJX 0.023 −1 89
MS417 4F3I 0.036 0 90
GW841819X 2YEL 0.046 0 91
I-BET762 3P5O 0.050 0 92
(+)-JQ1 3MXF 0.050 0 93
BI-2536 4OGI 0.056 +1 94
MS267 4NUE 0.150 0 95
RVX-OH 4MR3 0.153 0 96
BzT-7 3U5L 0.640 0 97
Ms435 4NUC 0.910 0 95
alprazolam 3U5J 2.460 0 97
Olinone 4QB3 3.400 0 98
RVX-208 4J3IS 8.930 0 99

aNote that rDock poses were generated only for the neutral forms of
I-BET858, I-BET726, and BI-2536. While we considered both neutral
and charged forms for scoring those poses (hydrogens generated
using OpenBabel 2.4.1), these three ligands are likely disadvantaged
relative to the decoys.
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3. RESULTS AND DISCUSSION

3.1. Free Energy of Solvation Parameters for Small
Molecules. The deconstruction of small organic compounds
as “polymers” of building blocks is nontrivial. Drug-like
molecules are diverse, originating both from natural com-
pounds, with complex chemistry, and, on the contrary, from
simple scaffolds and simple chemistry. We aimed to maximize
the use of direct experimental measurements in the assignment
of solvation groups. Our database of rFOS contains 720 values
for molecular fragments and 49 corrective values. The
algorithm is designed to assign the minimum amount of
corrective values and automatically find the largest sub-
structures with rFOS data, Figure 1a. We investigated the
quality of the deconstruction algorithm on the ligands of the
PDBbind validation set (see 2.3.1). The minimum number of
substructures per ligand, including correction factors, is 1, that
is, complete description of the (fragment) molecule by a single
solvation group, and the maximum is 31. The median is 9, as
well as the mean, Figure 1b. As expected, there is a natural bias
toward more substructures for larger compounds, Figure 1c.
Corrective values are used sparsely, Figure 1d, with minimum,
median, and mean uses of 0, 12.5, and 17%, respectively, for
the fraction of heavy atoms in the molecule that are not

included in proper molecular fragments but instead described
by corrective values. This level of the use of corrective values is
expected to impact the resultant rFOS values only slightly. For
791 ligands from the Greenidge et al.22 set, the mean, relative
unsigned difference is ∼15% if we only use corrective values
instead of relying on the complete database, while the
correlation coefficients (Spearman/Pearson) are both >0.99.
The deviation is almost exclusively toward more negative rFOS
values (the signed difference is ca. −15%).

3.2. ABSINTH Ranks Known Actives as Good as State-
Of-The-Art Techniques. We investigated the ability of a
scoring function based on the ABSINTH solvation model to
rank known ligands according to their experimental binding
affinities to their protein targets. There are several deviations
from common scoring protocols and from the original
ABSINTH model, which we included and which are evaluated
below. A short description is found in 2.3. Because the
methodological details are quite expansive, most of them are
found as Supporting Information (sections S.1−S.6).
The salient aspects are summarized as follows. For each

selected complex (2.3.1), we analyzed the protein’s ligand
binding site to derive a list of residues that could possibly exist
in multiple protonation states. From this list, we prepared,

Figure 1. Illustration and analysis of the deconstruction algorithm. (a) An example organic molecule is decomposed into solvation groups. Circles
represent different solvation groups as identified from the database of rFOS values. Circles drawn in dashed lines are solvation groups represented
by corrective values. The deconstruction of the molecule into four solvation groups and four corrective values is the solution among all cliques that
covers the largest number of atoms (excluding corrective values) by the minimum number of substructures (4). (b) Distribution of the number of
substructures (corresponding to solvation groups) that were used to parameterize the ligands in the set selected for the ranking test, see 2.3.1. (c)
Scatterplot of the count of substructures and molecular weight of the compounds. (d) Distribution of the fraction of heavy atoms in the molecule
that are part of corrective values rather than proper fragments.
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combinatorially, all possible complexes of protein H-mers with
putative relevant forms of the PDB ligand (2.3.3). These 7457
structures were relaxed (2.3.2) and subsequently underwent an
MD simulation protocol in rigid-body/dihedral angle space
(S.2) involving a binding site-centric subset of degrees of
freedom (2.3.5) at 250 K. For each complex, simulations were
also performed for ligand and protein separately with identical
settings, thus accounting for both ligand and protein stress. For
the protein-only simulations, K+ and Cl− were added according
to the ligands’ charge groups carrying a nonzero net charge
(2.3.4 and S.3).
For an individual complex, the binding energy was estimated

from the mean force-field energy difference including reference
state corrections for ions (if any, eq 3). The total ABSINTH
energy, which is a sum of contributions from bonded
potentials, van der Waals terms, screened electrostatic
interactions, eq 2, and the DMFI, eq 1, was augmented by a
self-correction for ligands carrying multiple charged function-
alities, eq S11 (see S.6). The screened electrostatics term used
group-consistent screening following a prior study.41 We added

and updated force−field parameters (Tables S3−S7) inspired
in part by independent results.43,100

The experimentally observable binding free energy of a
complex was approximated from the binding energies of all its
considered H-mers and the conversion energies between these
H-mers (S.4). The latter were calculated from the same MD
data collected as described above, specifically the protein-only
part. This required reference energies for protein residues,
which were taken from dipeptide simulations (Table S1). The
final prediction from this model is a single computational
estimate of the experimentally observed pKd or pKi values, eq
4.
Of course, a few of the 7457 systems are unstable because of

steric or electrostatic conflicts, which might cause the ligand to
move away from the binding site. We decided to be lenient in
keeping points where the root mean square deviation (RMSD)
between simulated and experimental complex was large
(threshold of 10 Å): discarding points based on the RMSD
might mask predictions of favorable alternative binding poses
and thus obfuscate a relevant source of error. On average,

Figure 2. Scatterplots of experimental and predicted pKd values for different models. In all cases, the color code differentiates ligands with different
numbers of charge groups carrying a nonzero net charge (equilibrium-weighted in cases of multiple ligand H-mers). Correlation values are given
(Spearman/Pearson) along with the data set size both overall and separately for compounds devoid of formal charges (blue font). For both plotting
and correlation, values were retained for an interval from −25 to 150 in predicted pKd, and the corresponding numbers of points (n, out of 754) are
provided in the figure. (a) One replicate data set from the final model (for others, see Figure S3a−d). (b) Same as (a) but choosing only the
microscopic binding equilibrium for the most populated H-mer(s) in the unbound state as score. (c) Same as (b) for the reference protein H-mer.
(d) Same as (a) but ignoring the post facto self-correction (see Supporting Information, eq S11). (e) Data set collected without ions in the protein
simulations. (f) Data set collected without ions in the protein simulations and truncating all electrostatic interactions, including monopole−
monopole terms, to residue-based cutoffs at 12 Å. (g) Data set collected using old parameters (Lennard-Jones and free energy of solvation offsets,
see Supporting Information, S.6, also compare Figure S3f). (h) Data set collected using atom-based rather than group-based screening (see 2.1). (i)
Data set where all electrostatic and solvation terms (eqs 1 and 2) are replaced with results from Poisson calculations (see Supporting Information,
S.4, for details). These values were obtained using published protocols7 without further minimization within a Poisson or related model.
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∼100 cases did not produce interpretable data, some also
because of MD simulations of complex or protein becoming
unstable. The latter can happen for poor combinations of the
protonation states of adjacent side chains, for example, a
protonated histidine next to a protonated acid. In the
equilibrium calculation, such missing data were treated as
highly unfavorable, both for microscopic binding and protein
H-mer reactions, which effectively discards the problematic
species from the equilibrium.
The results of several calculations are plotted in Figure 2.

The data in (a), which correspond to the final model, represent
one example taken from 5 replicates. For these replicates, the
entire calculation pipeline, which is stochastic because of
velocity initialization and the thermostat (see S.2), was
repeated in independent sets. The Spearman correlations
were 0.63, 0.63, 0.62, 0.62, and 0.63 for these (Pearson: 0.60,
0.60, 0.59, 0.60, and 0.60) indicating a very small statistical
error. Thus, almost all of the differences in Figure 2 appear to
be significant, which we confirmed by a resampling strategy
(Figures S1 and S2). The comparatively large size of the data
set (>700 complexes) and its inherent diversity make it
unlikely that the observed improvements are because of
spurious trends resulting from peculiarities of individual or few
complexes.
Figure 2b,c highlight the importance of using the correct

protein H-mer. In particular, predictions by assuming the H-
mer derived using the most likely protonation states of isolated
amino acid side chains at neutral pH, (c), are clearly worse.
The most likely protein H-mer in the unbound state is
estimable independent of any ligand (and vice versa), so this
information is also, unlike the estimation of the most likely H-
mer(s) in the bound state, useable in screening campaigns. As
observed consistently in force-field scoring functions with
implicit treatment of desolvation costs,23 the estimation of the
binding affinity of neutral compounds is an easier task than
that of charged compounds. This is confirmed by (e) and (f):
we find that the ion corrections, which resemble a competitive
titration experiment, are needed to produce quantitatively
comparable values for compounds carrying charge groups.
From these data, it is not advisable to discard protein context
to limit the impact of net charges, which is what is done
effectively in (f). Presumably, this is because a net-charge
complementarity between the whole protein and ligand is a
contributor to binding affinity. With all corrections in place,
there is still a difference between strictly neutral compounds
and the rest (Spearman 0.72 versus 0.52), but there is
appreciable correlation also for the latter.
Figure 2d shows that the self-correction we introduce here,

eq S11, is needed for ligands with multiple charged
functionalities in close proximity, for example, free amino
acids or citrate. It, by construction, cannot affect any other
cases, which is why the remaining data points are identical to
(a). Finally, Figure 2g,h demonstrate the usefulness of
improvements to the ABSINTH model, in particular to use
group-consistent charge screening. These results are also
relevant for the further development of the ABSINTH model
in other contexts.
We emphasize that the PDBbind data set includes only

known binders. It has been established repeatedly that, for this
or similar data sets, very simple scores measuring effectively the
interaction interface produce high levels of correlation.8,101,102

We confirm this here by analyzing the correlation of
experimental log Kd values with two contributions to the

estimated binding free energies: the nonelectrostatic (van der
Waals and covalent stress terms) versus electrostatic/solvation
contributions for the most likely H-mer(s) in the unbound
state (Figure S4a−b). The resultant rank correlation of 0.78 in
(a) is close to a realistic ceiling when considering errors in
experimental measurements.103 This means that the remaining
terms are essentially a source of noise. Given this
interpretation, we replaced the electrostatic/solvation con-
tributions in Figure S4b with values derived from a continuum
electrostatics treatment using the Poisson equation. We could
not produce a completely analogous data set with a Poisson
model because of computational feasibility and because aspects
of our protocol (like the use of explicit ions or the MD
integrator) are not supported in this paradigm and its
implementations.
The hybrid Poisson data set is shown in Figure 2i. While the

overall results are most similar to (e), a focus on compounds
not carrying net-charge groups reveals this model to approach
the aforementioned ceiling (Spearman 0.77) and to outper-
form the model in Figure 2a for this subset (Spearman: 0.72).
This allows four inferences: first, the Lennard-Jones con-
tributions can be treated independently. Second, the electro-
static treatments, despite their different paradigms, produce
correlated results for neutral compounds (Figure S4c). Third, a
particular treatment of nonpolar solvation is not necessary to
achieve good correlation with this experimental data set
(absolute errors are a different issue).104 Fourth, problems
with charged compounds need to be addressed at a more
fundamental level than at the accuracy of the continuum model
(compare Figure S4d), and the inclusion of ions is one strategy
for this. Of course, the Poisson data in Figure 2i are somewhat
artificial, but the choice of using the values for the most likely
H-mer in the unbound state is not at fault: selecting instead the
value for the reference H-mer, or the median, minimum, or
maximum value across H-mers leave the results largely
unchanged or make them worse. Conversely, the correlation
for charged compounds is likely to improve upon following a
true MM/PBSA approach where snapshots are taken from fully
flexible MD simulations, and the results are averaged. Table 1
of Sun et al.105 shows that correlations differ strongly for a
minimization-based protocol from an MD average for MM/
PBSA but much less so for the chosen MM/GBSA model.106

This sensitivity might be exacerbated for charged compounds,
and we hypothesize this to be the most likely reason for the
comparatively poor performance for charged compounds in
Figure 2i. Similar to the cited MM/GBSA results, the
ABSINTH results do not change significantly if the protocol
in 2.3.5 is changed to instead perform a single-point calculation
after minimization (see Supporting Information, Figure S5).
The chosen low dielectric, which was 4.0 here, is known to
have an even larger impact on Poisson models, in particular for
charged compounds, as it controls the amplitude of electro-
static terms. We point out that we did not modify the
ABSINTH model’s use of a true vacuum reference (a relative
dielectric of 1.0) in this work. We instead conjecture that
appropriate corrections can be introduced that recognize and
partially address weaknesses in common scoring protocols.
The use of inorganic ions is one such correction (see
Supporting Information, S.3).
As a test of robustness, we also checked the impact of two

comparatively artificial choices in our model. First, we chose a
simulation temperature of 250 K, which, while feasible in a
continuum model, is much lower than both ambient and
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physiological temperatures. However, choosing 310 K has
virtually no impact on the quality of the results (Figure S3e),
and in practice any value in this range is likely to be acceptable
as long as the receptor stays largely rigid. Second, we were
interested in how much the free energy of solvation offsets for
net-charge groups on organic molecules and polymers
(compare Supporting Information, Table S3) might affect
our results. These offsets are correction parameters introduced
in the original model,31 which are halved here. Halving them
again from −15 to −7.5 kcal/mol has no discernible impact
either (Figure S3f). This suggests a low sensitivity and high
robustness to these values.
We next were interested in elucidating whether the

observation that a simple Lennard-Jones model is superior
on this data set is because of any remaining systematic errors in
the complete model. To answer this question, we show in
Figure 3 the same scatterplot as in Figure 2a, but highlighting a
number of properties of the underlying complexes. Figure 3b,c
confirm that neutral and hydrophobic compounds are most
suitable for binding very tightly to their protein target.

Figure 3d is a reassuring result in that it demonstrates that
larger deviations from the crystal pose occur predominantly for
experimentally and computationally weak binders, as expected.
The same trend is seen in Figure 3e, again in line with
expectation: complexes where the charges of ligand and
protein are of the same sign and their product is large are
excluded from high affinities. Figure 3f shows the opposite case
of favorable charge complementarity: here, complexes with
large values tend to be both outliers and associated with large
statistical errors. However, these are rare cases, and the
complexes with moderate charge complementarity exhibit no
particular trend.
In the last row of Figure 3, we analyze the impact of the H-

mer equilibrium. However, the error in pKd that would have
been made by considering the most likely protein H-mer in the
unbound state alone, (g), the relevance of multiple species at
equilibrium, (h), or the number of protein H-mers, (i), all fail
to reveal obvious trends. Based on Figure 3, we thus conclude
that there are no clear avenues to pursue for eliminating further

Figure 3. Scatterplots of experimental versus predicted pKd values for the final model. In each panel, the data and color code are identical: colors
correspond, from green to red, to the quartiles of statistical errors in increasing order. Errors are calculated as the min/max ranges across five
identical replicates. The quartile boundaries were 2.80, 4.02, and 6.09, respectively. Points are restricted to the 742 complexes yielding interpretable
data in all five replicates. Above a minimum, the sizes of the circles’ scale linearly with selected properties of the complex or ligand. Where
necessary, the properties were obtained as weighted averages following the predicted equilibrium distribution across the complex H-mers. (a) The
number of dihedral degrees of freedom in the ligand. (b) The absolute value of the ligand’s net charge. (c) The absolute value of the ligand’s
reference free energy of solvation; note that there are only two ligands with a positive value, both very close to 0.0. (d) The RMSD of the final
ligand conformation from the crystal pose. (e) The product of net ligand and protein charges if positive. (f) The absolute value of the product of
net ligand and protein charges if negative. (g) The difference in the predicted pKd relative to the pKd predicted from the microscopic equilibrium
involving just the most likely H-mer(s) in the unbound state. (h) The value of 1.0 minus the fractional occupation of the most populated species.
These data depend on total ligand and protein concentrations which were both set to 1.0 μM. (i) The number of protein H-mers in the
equilibrium.
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systematic errors from the predictions. Of course, this
conclusion is restricted to the properties we chose to analyze.
3.3. ABSINTH Enriches Actives in a Set of Decoys. The

most valuable property of a scoring function is to be able to
identify true binders in a set of non-binders, which is the
purpose of a virtual screen. We compared the performances of
a reference model (molecular mechanics/Poisson, MM/P) to
two ABSINTH scores to identify known binders in a set of
decoys on the bromodomain of BRD4(1). The test set
comprised 16 known binders with affinities in the nM−μM
range. We use two levels of decoys: first, ∼1000 molecules
were selected with similar properties to the known binders;
second, for every molecule, including known binders, diverse
poses were generated using rDock (see 2.4.1 for details). To
make this test similar to actual applications and to the MM/P
data set, in particular under resource constraints, the protocol
for ABSINTH was simplified relative to that described in
2.3.2−2.3.6 and the Supporting Information: there is only a
single protein H-mer, the few ligand H-mers were treated
independently, and no protein residues were allowed to move.
Moreover, the ion corrections were not performed for each
ligand separately as this would not be meaningful for diverse
and electrostatically unfavorable poses (see Supporting
Information, S.3, for details).
Figure 4 shows receiver operating characteristic (ROC)

curves for two different splits of the data into (true) positives
and negatives. This evaluates the models as binary classifiers,
meant to distinguish binders from nonbinders. The solid lines
in Figure 4a show the ROC results as one would have obtained
in a prospective screening campaign. Clearly, even without
knowing crystallographic poses, both ABSINTH scores
perform much better than a random classifier based on both
AUC (random: 0.5) and Youden’s J-statistic (random: ∼0.14
for this number of true positives and negatives). The ion
corrections produce a superior model because without them,
for this target, positively charged compounds are ranked too
favorably and push down the ranks of the (mostly neutral) true

binders. The performance of the MM/P scores is significantly
worse in this test. It is interesting to note that inclusion of
crystal poses (dashed lines) makes a larger difference for MM/
P than for ABSINTH. This is unexpected because the primary
effect should be to eliminate limitations of rDock in identifying
a representative pose. As Figure S6a demonstrates, the MM/P
performance is worse in the enrichment task, even though its
performance in the correlation task for this single-receptor data
set of 16 compounds is comparable if not slightly superior
(Pearson/Spearman 0.69/0.67 versus 0.63/0.69 for ABSINTH
with ion corrections). This highlights the point made above: a
model that exhibits good correlation with experimental data for
binders can be a surprisingly poor choice in a virtual screen,
the obvious caveat being that, generally speaking, model
performance is highly variable across different systems.
Figure 4b demonstrates that all models excel at distinguish-

ing experimental from predicted poses. The performance of
ABSINTH is weakened slightly by the fact that one of the
crystal poses led to an unstable simulation and is ranked last
(technically, its rank is a tie with all other poses for which this
happened, about 10% of all poses for ABSINTH). The
importance of the ion corrections is visible again. The MM/P
score performs similarly in this test, which highlights that the
weakness of this method observed in (a) is not because of poor
scores assigned to good poses or vice versa. Instead, it appears
that MM/P offers too little contrast between good poses for
nonbinders and good poses for binders. As expected based on
this result, the total scores from both methods are correlated at
the level of individual poses (Figure S6b) albeit not as tightly
as one might expect given the similarity in Figure 4b.
Repetitions of the ABSINTH calculations yielded AUC/J-
statistic values of 0.87/0.62 and 0.83/0.60 (ions) as well as
0.79/0.55 and 0.76/0.52 (no ions) for the data in Figure 4a
highlighting the statistical robustness of these results. As in the
ranking test (3.2), the stochasticity of the results stems from
the molecular dynamics sampler (see S.2).

Figure 4. ROC plots for the emulation of a prospective screening campaign. Values are shown for three different models, ABSINTH with ion
corrections, without these corrections, and MM/P. In all cases, the total predicted binding energy per individual complex is the underlying score.
The area-under-the-curve (AUC) and Youden’s J-statistic are reported (J-Sta.). (a) ROC plots for the enrichment of molecules. For each unique
molecule, the predicted pose with the best score was identified. The resulting plot reflects the ranks of the 16 known binders in the set of ∼1000
molecules (solid lines). To see the impact of possible deficiencies in the docking algorithm, the dashed lines and the numbers in parentheses show
the same upon including the crystallographic poses. Relative to a numerical null model (random classifier, based on picking 106 sets of 16 positive
controls at random), the estimated p-values for AUC/J-Sta. are <1 × 10−6/2 × 10−6, 4 × 10−5/1 × 10−4, and 0.019/0.096 for ABSINTH with ions,
ABSINTH without ions, and MM/P, respectively. (b) ROC plots for the enrichment of poses. Rather than using only a single pose per molecule, it
is assumed that the known crystallographic poses are the only true positives in the entire set of ∼1.57 × 105 poses. The assumed negatives include
all predicted poses of known binders.
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4. CONCLUSIONS

In this work, we propose and subsequently demonstrate that
the ABSINTH implicit solvent model and force field can be
generalized to describe the interactions of organic molecules
with proteins. Our approach involves a number of
modifications to typical virtual screening workflows, most
notably the inclusion of inorganic ions as competitors for
charged ligands, and the explicit enumeration of protein and
ligand H-mers. The model performs well in comparison to
reference models based on the Poisson equation to describe
electrostatic contributions (Figures 2, S4c, and 4). Literature
results suggest that a correlation coefficient of around 0.8 is a
ceiling for scoring functions in predicting experimental
affinities of known binders across a range of targets.8,22,103,105

As we show in Figure S4a, and as is found equivalently from
machine learning approaches,8,101 simple geometric descrip-
tors, which encompasses the Lennard-Jones functional form,
are enough to provide this correlation of ∼0.8. Evidently, the
electrostatic contributions will be un- or anti-correlated with
the experiment as seen in Figure S4b. This raises the question
whether implicit solvent models, where the focus is on polar
interactions, for example, GB/PB models, should be evaluated
or optimized at all for such a test. A critical reading of this
work, Sun et al.,105 Huang et al.,107 or Greenidge et al.22 might
suggest that the proposed improvements and parameters are
primarily “silencing” the noise from electrostatic terms. For
example, Sun et al. found that a dielectric constant of 4.0 is
clearly superior to smaller values, that is, it appears best to
reduce the magnitude of descreening and desolvation effects.
This is why it is critically important that the ABSINTH model
also does well in the second task (Figure 4), where a significant
enrichment of true actives is observed.
It is important to emphasize that the ABSINTH model as

used here has not been modified substantially since its
inception and the only conceptual amendment we propose
here is the self-correction for molecules containing charged
moieties in close (topological) proximity (eq S11, Figure 2d).
The remaining changes are to parameters: partial charges are
modular entities in ABSINTH, and we have replaced the
original OPLS108 values with those from CHARMM36,75

primarily to be consistent with the use of CGenFF.61 Along
with minor updates to rFOS parameters (Table S3), revised
Lennard-Jones parameters (Tables S4−S7) are suggested here.
Similar parameter updates have already been proposed and
validated for simulations of nanotube formation by zwitterionic
molecules.43 A systematic evaluation of the manual adjust-
ments of Lennard-Jones parameters in the broader context of
the ABSINTH model is part of ongoing work. In addition, the
results in 3.2 rely on a tunable radius, which determines the
extent of receptor flexibility in the vicinity of the ligand.
However, for a campaign on an individual receptor, the set of
mobile residues can and will usually be hand-picked. Larger
values increase the amount of sampling required to keep
statistical errors at bay.
As a result of the conservative nature of extending

ABSINTH to small molecules, we are able to retain the
model’s appealing properties: (1) the use of experimental
rFOS values means that the DMFI will frequently encapsulate
realistic desolvation costs for both ligand and protein; (2) the
parameterization is comparatively simple because most bonded
interactions can be omitted in rigid-body/torsional space (see
Supporting Information, S.1); (3) by employing solvent-

accessible volumes, concerns related to the treatment of
boundaries of low-dielectric cavities are avoided;35 (4) single-
point energy calculations are fast and suitable for deployment
in the rescoring of virtual screening campaigns. The last point
holds despite the fact that there is potential for further
optimization given the peculiarities of this type of application,
for example, in the treatment of constrained, intrareceptor
interactions. A caveat of the current protocol is that ring
flexibility, as for macrocycles, is not handled by the MD
integrator.79 The simplest workaround is to treat one of the
ring bonds as a set of harmonic restraints, but we did not use
this or other solutions for the results presented here. When
working with large data sets, it is always a challenge to ensure
that setup and parameters are appropriate.109 The largest
source of errors in assigning rFOS parameters for ABSINTH
are difficult-to-detect moieties carrying a net charge such as
those occurring in nitrogen-containing heteroaromatic systems.
We are currently not resorting to atomic partial charges in the
solvation group assignment, but this will likely have to change
in the future. At the same time, it is an ongoing process to
extend the chemical space to which rFOS parameters can be
assigned by adding values to the reference database (2.2.1).
Aside from such technical points, the primary limitations in

improving the results further are difficult to pin down. As
Figure 3 shows, the final ABSINTH model no longer suffers
from systematic errors that can be mapped cleanly to simple
properties of proteins or ligands. Of course, our data do
support the conclusion (Figures 2 and S4b) that correlations
are weaker for ligands carrying net-charge groups, but this is
not manifested as systematic deviations. The ion corrections
require care as follows. In a screening campaign, the receptor is
usually a single structure, and this structure might offer
putative binding sites for ions. We are currently developing
strategies to make sure that ions can be placed in such a way
that they are sufficiently relaxed yet do not explore sites
inaccessible to ligands. More importantly, successful applica-
tions of free energy methodologies to the prediction of binding
affinities,110,111 in particular also for bromodomains,112 suggest
that the virtual screening protocol itself, in particular the
approximation in eq 3, is to blame. Specifically, Aldeghi et al.
found that Poisson models were outperformed by absolute free
energy methods even after incorporation of entropy
corrections or inclusions of variable amounts of explicit
water molecules.113 Thus, we will, in future work, evaluate
an ABSINTH-based framework for absolute free-energy
calculations. In this context, it is useful to remind the reader
that ABSINTH is an efficient implicit solvent model developed
for molecular simulations. For the system and data in Figure 4,
the computational cost for a single-point energy calculation
was between two and three orders of magnitude below that of
the corresponding single-point calculation using finite-differ-
ence Poisson. This is what enables us to even pursue the
strategies explored in the manuscript such as the integration of
H-mers, the use of explicit ions, and the reliance on trajectory
averages.
We have presented here the use of an ABSINTH force field

for small molecules in the context of (re)scoring poses that
were generated by other means, either experimentally or by a
docking program. While it might seem challenging to rely on
energy values averaged over MD runs to derive scores, our
results suggest that this is not a major issue even if the receptor
is partially flexible. The low cost of single-point energy
evaluations in ABSINTH means that the pose search can itself
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employ the ABSINTH model or a simplified version thereof,
but we have not tested this in the present work. Finally, with
respect to the parameter refinements for ABSINTH, it will be
interesting to see how valuable the modifications proposed
here prove in the context of simulations of the folding, binding,
and assembly of biomacromolecules.
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Davies, M.; Krüger, F. A.; Light, Y.; Mak, L.; McGlinchey, S.;
Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J. P. The
ChEMBL bioactivity database: an update. Nucleic Acids Res. 2013, 42,
D1083−D1090.
(2) Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of
early drug discovery. Br. J. Pharmacol. 2011, 162, 1239−1249.
(3) Pu, M.; Hayashi, T.; Cottam, H.; Mulvaney, J.; Arkin, M.; Corr,
M.; Carson, D.; Messer, K. Analysis of high-throughput screening
assays using cluster enrichment. State Med. 2012, 31, 4175−4189.
(4) List, M.; Schmidt, S.; Christiansen, H.; Rehmsmeier, M.; Tan,
Q.; Mollenhauer, J.; Baumbach, J. Comprehensive analysis of high-

throughput screens with HiTSeekR. Nucleic Acids Res. 2016, 44,
6639−6648.
(5) Westermaier, Y.; Barril, X.; Scapozza, L. Virtual screening: An in
silico tool for interlacing the chemical universe with the proteome.
Methods 2015, 71, 44−57.
(6) Torres, P. H. M.; Sodero, A. C. R.; Jofily, P.; Silva, F. P., Jr. Key
topics in molecular docking for drug design. Int. J. Mol. Sci. 2019, 20,
4574.
(7) Marchand, J.-R.; Dalle Vedove, A.; Lolli, G.; Caflisch, A.
Discovery of inhibitors of four bromodomains by fragment-anchored
ligand docking. J. Chem. Inf. Model. 2017, 57, 2584−2597.
(8) Khamis, M. A.; Gomaa, W. Comparative assessment of machine-
learning scoring functions on PDBbind 2013. Eng. Appl. Artif. Intell.
2015, 45, 136−151.
(9) Liu, J.; Wang, R. Classification of current scoring functions. J.
Chem. Inf. Model. 2015, 55, 475−482.
(10) Glaab, E. Building a virtual ligand screening pipeline using free
software: a survey. Briefings Bioinf. 2016, 17, 352−366.
(11) Pagadala, N. S.; Syed, K.; Tuszynski, J. Software for molecular
docking: a review. Biophys. Rev. 2017, 9, 91−102.
(12) Lyu, J.; Wang, S.; Balius, T. E.; Singh, I.; Levit, A.; Moroz, Y. S.;
O’Meara, M. J.; Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A. A.;
Shoichet, B. K.; Roth, B. L.; Irwin, J. J. Ultra-large library docking for
discovering new chemotypes. Nature 2019, 566, 224−229.
(13) Gaieb, Z.; Liu, S.; Gathiaka, S.; Chiu, M.; Yang, H.; Shao, C.;
Feher, V. A.; Walters, W. P.; Kuhn, B.; Rudolph, M. G.; Burley, S. K.;
Gilson, M. K.; Amaro, R. E. D3R Grand Challenge 2: blind prediction
of protein-ligand poses, affinity rankings, and relative binding free
energies. J. Comput.-Aided Mol. Des. 2018, 32, 1−20.
(14) Gathiaka, S.; Liu, S.; Chiu, M.; Yang, H.; Stuckey, J. A.; Kang,
Y. N.; Delproposto, J.; Kubish, G.; Dunbar, J. B.; Carlson, H. A.;
Burley, S. K.; Walters, W. P.; Amaro, R. E.; Feher, V. A.; Gilson, M. K.
D3R grand challenge 2015: Evaluation of protein−ligand pose and
affinity predictions. J. Comput.-Aided Mol. Des. 2016, 30, 651−668.
(15) Foloppe, N.; Hubbard, R. Towards predictive ligand design
with free-energy based computational methods? Curr. Med. Chem.
2006, 13, 3583−3608.
(16) Marchand, J.-R.; Lolli, G.; Caflisch, A. Derivatives of 3-amino-
2-methylpyridine as BAZ2B bromodomain ligands: in silico discovery
and in crystallo validation. J. Med. Chem. 2016, 59, 9919−9927.
(17) Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA
methods to estimate ligand-binding affinities. Expert Opin. Drug
Discovery 2015, 10, 449−461.
(18) Kolb, P.; Huang, D.; Dey, F.; Caflisch, A. Discovery of kinase
inhibitors by high-throughput docking and scoring based on a
transferable linear interaction energy model. J. Med. Chem. 2008, 51,
1179−1188.
(19) Davis, C. M.; Gruebele, M.; Sukenik, S. How does solvation in
the cell affect protein folding and binding? Curr. Opin. Struct. Biol.
2018, 48, 23−29.
(20) Yoshida, N. Role of solvation in drug design as revealed by the
statistical mechanics integral equation theory of liquids. J. Chem. Inf.
Model. 2017, 57, 2646−2656.
(21) Willow, S. Y.; Xie, B.; Lawrence, J.; Eisenberg, R. S.; Minh, D.
D. L. On the polarization of ligands by proteins. Phys. Chem. Chem.
Phys. 2020, 22, 12044−12057.
(22) Greenidge, P. A.; Kramer, C.; Mozziconacci, J.-C.; Wolf, R. M.
MM/GBSA binding energy prediction on the PDBbind data set:
Successes, failures, and directions for further improvement. J. Chem.
Inf. Model. 2013, 53, 201−209.
(23) Marchand, J.-R.; Caflisch, A. In silico fragment-based drug
design with SEED. Eur. J. Med. Chem. 2018, 156, 907−917.
(24) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation
and use of the MM-PBSA approach for drug discovery. J. Med. Chem.
2005, 48, 4040−4048.
(25) Czaplewski, C.; Ripoll, D. R.; Liwo, A.; Rodziewicz-Motowid?o,
S.; Wawak, R. J.; Scheraga, H. A. Can cooperativity in hydrophobic
association be reproduced correctly by implicit solvation models? Int.
J. Quantum Chem. 2002, 88, 41−55.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00558
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00558?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00558/suppl_file/ci0c00558_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andreas+Vitalis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5422-5278
http://orcid.org/0000-0002-5422-5278
mailto:a.vitalis@bioc.uzh.ch
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jean-Re%CC%81my+Marchand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-8002-9457
http://orcid.org/0000-0002-8002-9457
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tim+Knehans"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amedeo+Caflisch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-2317-6792
http://orcid.org/0000-0002-2317-6792
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00558?ref=pdf
https://dx.doi.org/10.1093/nar/gkt1031
https://dx.doi.org/10.1093/nar/gkt1031
https://dx.doi.org/10.1111/j.1476-5381.2010.01127.x
https://dx.doi.org/10.1111/j.1476-5381.2010.01127.x
https://dx.doi.org/10.1002/sim.5455
https://dx.doi.org/10.1002/sim.5455
https://dx.doi.org/10.1093/nar/gkw554
https://dx.doi.org/10.1093/nar/gkw554
https://dx.doi.org/10.1016/j.ymeth.2014.08.001
https://dx.doi.org/10.1016/j.ymeth.2014.08.001
https://dx.doi.org/10.3390/ijms20184574
https://dx.doi.org/10.3390/ijms20184574
https://dx.doi.org/10.1021/acs.jcim.7b00336
https://dx.doi.org/10.1021/acs.jcim.7b00336
https://dx.doi.org/10.1016/j.engappai.2015.06.021
https://dx.doi.org/10.1016/j.engappai.2015.06.021
https://dx.doi.org/10.1021/ci500731a
https://dx.doi.org/10.1093/bib/bbv037
https://dx.doi.org/10.1093/bib/bbv037
https://dx.doi.org/10.1007/s12551-016-0247-1
https://dx.doi.org/10.1007/s12551-016-0247-1
https://dx.doi.org/10.1038/s41586-019-0917-9
https://dx.doi.org/10.1038/s41586-019-0917-9
https://dx.doi.org/10.1007/s10822-017-0088-4
https://dx.doi.org/10.1007/s10822-017-0088-4
https://dx.doi.org/10.1007/s10822-017-0088-4
https://dx.doi.org/10.1007/s10822-016-9946-8
https://dx.doi.org/10.1007/s10822-016-9946-8
https://dx.doi.org/10.2174/092986706779026165
https://dx.doi.org/10.2174/092986706779026165
https://dx.doi.org/10.1021/acs.jmedchem.6b01258
https://dx.doi.org/10.1021/acs.jmedchem.6b01258
https://dx.doi.org/10.1021/acs.jmedchem.6b01258
https://dx.doi.org/10.1517/17460441.2015.1032936
https://dx.doi.org/10.1517/17460441.2015.1032936
https://dx.doi.org/10.1021/jm070654j
https://dx.doi.org/10.1021/jm070654j
https://dx.doi.org/10.1021/jm070654j
https://dx.doi.org/10.1016/j.sbi.2017.09.003
https://dx.doi.org/10.1016/j.sbi.2017.09.003
https://dx.doi.org/10.1021/acs.jcim.7b00389
https://dx.doi.org/10.1021/acs.jcim.7b00389
https://dx.doi.org/10.1039/d0cp00376j
https://dx.doi.org/10.1021/ci300425v
https://dx.doi.org/10.1021/ci300425v
https://dx.doi.org/10.1016/j.ejmech.2018.07.042
https://dx.doi.org/10.1016/j.ejmech.2018.07.042
https://dx.doi.org/10.1021/jm049081q
https://dx.doi.org/10.1021/jm049081q
https://dx.doi.org/10.1002/qua.10077
https://dx.doi.org/10.1002/qua.10077
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00558?ref=pdf


(26) Feig, M.; Brooks, C. L. Recent advances in the development
and application of implicit solvent models in biomolecule simulations.
Curr. Opin. Struct. Biol. 2004, 14, 217−224.
(27) Levy, R. M.; Zhang, L. Y.; Gallicchio, E.; Felts, A. K. On the
nonpolar hydration free energy of proteins: Surface area and
continuum solvent models for the solute−solvent interaction energy.
J. Am. Chem. Soc. 2003, 125, 9523−9530.
(28) Pitera, J. W.; van Gunsteren, W. F. The importance of solute−
solvent van der Waals interactions with interior atoms of biopolymers.
J. Am. Chem. Soc. 2001, 123, 3163−3164.
(29) Shimizu, S.; Chan, H. S. Anti-cooperativity and cooperativity in
hydrophobic interactions: Three-body free energy landscapes and
comparison with implicit-solvent potential functions for proteins.
Proteins: Struct., Funct., Bioinf. 2002, 48, 15−30.
(30) Harris, R. C.; Pettitt, B. M. Examining the assumptions
underlying continuum-solvent models. J. Chem. Theory Comput. 2015,
11, 4593−4600.
(31) Vitalis, A.; Pappu, R. V. ABSINTH: A new continuum solvation
model for simulations of polypeptides in aqueous solutions. J. Comput.
Chem. 2009, 30, 673−699.
(32) Lazaridis, T.; Karplus, M. Effective energy function for proteins
in solution. Proteins: Struct., Funct., Bioinf. 1999, 35, 133−152.
(33) Nina, M.; Beglov, D.; Roux, B. Atomic radii for continuum
electrostatics calculations based on molecular dynamics free energy
simulations. J. Phys. Chem. B 1997, 101, 5239−5248.
(34) Swanson, J. M. J.; Mongan, J.; McCammon, J. A. Limitations of
atom-centered dielectric functions in implicit solvent models. J. Phys.
Chem. B 2005, 109, 14769−14772.
(35) Swanson, J. M. J.; Wagoner, J. A.; Baker, N. A.; McCammon, J.
A. Optimizing the Poisson dielectric boundary with explicit solvent
forces and energies: Lessons learned with atom-centered dielectric
functions. J. Chem. Theory Comput. 2007, 3, 170−183.
(36) Tjong, H.; Zhou, H.-X. On the dielectric boundary in Poisson−
Boltzmann calculations. J. Chem. Theory Comput. 2008, 4, 507−514.
(37) Mao, A. H.; Lyle, N.; Pappu, R. V. Describing sequence−
ensemble relationships for intrinsically disordered proteins. Biochem. J.
2013, 449, 307−318.
(38) Martin, E. W.; Holehouse, A. S.; Grace, C. R.; Hughes, A.;
Pappu, R. V.; Mittag, T. Sequence determinants of the conformational
properties of an intrinsically disordered protein prior to and upon
multisite phosphorylation. J. Am. Chem. Soc. 2016, 138, 15323−
15335.
(39) Sherry, K. P.; Das, R. K.; Pappu, R. V.; Barrick, D. Control of
transcriptional activity by design of charge patterning in the
intrinsically disordered RAM region of the Notch receptor. Proc.
Natl. Acad. Sci. U.S.A. 2017, 114, E9243−E9252.
(40) Cumberworth, A.; Bui, J. M.; Gsponer, J. Free energies of
solvation in the context of protein folding: Implications for implicit
and explicit solvent models. J. Comput. Chem. 2016, 37, 629−640.
(41) Mao, A. H.; Crick, S. L.; Vitalis, A.; Chicoine, C. L.; Pappu, R.
V. Net charge per residue modulates conformational ensembles of
intrinsically disordered proteins. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 8183−8188.
(42) Das, R. K.; Pappu, R. V. Conformations of intrinsically
disordered proteins are influenced by linear sequence distributions of
oppositely charged residues. Proc. Natl. Acad. Sci. U.S.A. 2013, 110,
13392−13397.
(43) Arnon, Z. A.; Vitalis, A.; Levin, A.; Michaels, T. C. T.; Caflisch,
A.; Knowles, T. P. J.; Adler-Abramovich, L.; Gazit, E. Dynamic
microfluidic control of supramolecular peptide self-assembly. Nat.
Commun. 2016, 7, 13190.
(44) Vitalis, A. CAMPARI Website. http://campari.sourceforge.net/
(accessed July 31, 2020).
(45) Mohan, V.; Davis, M. E.; McCammon, J. A.; Pettitt, B. M.
Continuum model calculations of solvation free energies: accurate
evaluation of electrostatic contributions. J. Phys. Chem. 1992, 96,
6428−6431.

(46) Scarsi, M.; Caflisch, A. Comment on the validation of
continuum electrostatics models. J. Comput. Chem. 1999, 20, 1533−
1536.
(47) Murphy, K. P.; Gill, S. J. Group additivity thermodynamics for
dissolution of solid cyclic dipeptides into water. Thermochim. Acta
1990, 172, 11−20.
(48) Makhatadze, G. I.; Privalov, P. L. Contribution of hydration to
protein folding thermodynamics: I. The enthalpy of hydration. J. Mol.
Biol. 1993, 232, 639−659.
(49) Privalov, P. L.; Makhatadze, G. I. Contribution of hydration to
protein folding thermodynamics: II. The entropy and Gibbs energy of
hydration. J. Mol. Biol. 1993, 232, 660−679.
(50) Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. Group
contributions to the thermodynamic properties of non-ionic organic
solutes in dilute aqueous solution. J. Solution Chem. 1981, 10, 563−
595.
(51) Wolfenden, R.; Andersson, L.; Cullis, P. M.; Southgate, C. C. B.
Affinities of amino acid side chains for solvent water. Biochemistry
1981, 20, 849−855.
(52) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Aqueous solvation
free energies of ions and ion−water clusters based on an accurate
value for the absolute aqueous solvation free energy of the proton. J.
Phys. Chem. B 2006, 110, 16066−16081.
(53) Mobley, D. L.; Guthrie, J. P. FreeSolv: a database of
experimental and calculated hydration free energies, with input files.
J. Comput.-Aided Mol. Des. 2014, 28, 711−720.
(54) Guthrie, J. P. A blind challenge for computational solvation free
energies: Introduction and overview. J. Phys. Chem. B 2009, 113,
4501−4507.
(55) Sulea, T.; Wanapun, D.; Dennis, S.; Purisima, E. O. Prediction
of SAMPL-1 hydration free energies using a continuum electrostatics-
dispersion model. J. Phys. Chem. B 2009, 113, 4511−4520.
(56) Geballe, M. T.; Skillman, A. G.; Nicholls, A.; Guthrie, J. P.;
Taylor, P. J. The SAMPL2 blind prediction challenge: introduction
and overview. J. Comput.-Aided Mol. Des. 2010, 24, 259−279.
(57) Geballe, M. T.; Guthrie, J. P. The SAMPL3 blind prediction
challenge: transfer energy overview. J. Comput.-Aided Mol. Des. 2012,
26, 489−496.
(58) Mobley, D. L.; Wymer, K. L.; Lim, N. M.; Guthrie, J. P. Blind
prediction of solvation free energies from the SAMPL4 challenge. J.
Comput.-Aided Mol. Des. 2014, 28, 135−150.
(59) Vitalis, A.; Caflisch, A. 50 Years of Lifson−Roig models:
Application to molecular simulation data. J. Chem. Theory Comput.
2012, 8, 363−373.
(60) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and testing of a general AMBER force field. J.
Comput. Chem. 2004, 25, 1157−1174.
(61) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;
Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.;
Mackerell, A. D. CHARMM general force field: A force field for drug-
like molecules compatible with the CHARMM all-atom additive
biological force fields. J. Comput. Chem. 2010, 31, 671−690.
(62) Parsons, G. H.; Rochester, C. H.; Wood, C. E. C. Effect of 4-
substitution on the thermodynamics of hydration of phenol and the
phenoxide anion. J. Chem. Soc. B 1971, 0, 533−536.
(63) Ooi, T.; Oobatake, M.; Neḿethy, G.; Scheraga, H. A.
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