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a b s t r a c t

The microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTGase) is widely used for
industrial applications. However, in the last decades, TGases from other bacteria have been described.
We focused our attention on TGase, from Kutzneria albida (KalbTGase), recently characterized as more
selective than MTGase and proposed for applications in drug delivery. By comparison of the crystallo-
graphic structures, the volume of the catalytic site results smaller in KalbTGase. We compared
KalbTGase and MTGase structural flexibility by molecular dynamics (MD) simulations at different condi-
tions. KalbTGase is more rigid than MTGase at 300 K, but the catalytic site has a preserved conformation
in both structures. Preliminary studies at higher temperatures suggest that KalbTGase acquires enhanced
conformational flexibility far from the active site region. The volume of the catalytic active site pocket of
KalbTGase at room temperature is smaller than that of MTGase, and decreases at 335 K, remaining stable
after further temperature increase. On the contrary, in MTGase the pocket volume continues to decrease
as the temperature increases. Overall, the results of our study suggest that at room temperature the
enhanced specificity of KalbTGase could be related to a more closed catalytic pocket and lower flexibility
than MTGase. Moreover, by preliminary results at higher temperature, KalbTGase structural flexibility
suggests an adaptability to different substrates not recognized at room temperature. Lower adaptability
of MTGase at higher temperature with a reduction of the catalytic pocket, instead, suggests a reduction of
its activity.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transglutaminase (TGase) is a class of enzymes widespread in
plants, microorganisms, invertebrates, and vertebrates. TGase gen-
erally catalyzes acyl transfer reactions from an acyl donor to an
acyl acceptor such as from glutamines to amines, or from glutami-
nes to water when no acyl acceptor is present [1–3]. Among all
these acyl-transfer reactions, the most exploited one, from the
industrial point of view, is the ability to catalyze the formation of
cross-links between c-carboxamide group of glutamine residues
(acyl donor) and Ɛ-amino group of lysine residues (acyl acceptor).
This reaction allows the use of TGase in the food industry, in the
textile industry and in the pharmacological and biotechnological
fields. Indeed, cross-links production allows the formation of
protein-DNA/protein/polymer conjugates that are employed for
research and biotechnology purposes and that induce significant
changes in the functional properties of the food matrix, such as
gelation, emulsification, foam formation, viscosity, and water
retention capacity [3–4].

Although the research on TGases, particularly the ones of micro-
bial origin, is very active, to date the only TGase enzyme widely
used for industrial applications is the microbial TGase discovered
in 1989 and extracted from Streptomyces mobaraensis (MTGase),
because of its facility of expression and purification [5].

We reported a classification of microbial TGases, aimed to help
the finding of novel forms of this enzyme with potential applica-
tions [6]. In particular, a novel microbial TGase extracted from
the organism Kutzneria albida (KalbTGase), more selective than
MTGase, has been described and proposed for applications in drug
delivery [7]. Both enzymes are produced in an inactive form, in
which the helix of the pro-peptide segment occludes the active site
pocket groove, and probably, they also share the same activation
mechanism, during which some extracellular proteases cut this
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segment setting the groove free [7]. The mature form of KalbTGase
has a molecular weight of 26.4 kDa and is 100 residues smaller
than MTGase, whose molecular weight in the active form is 38 kDa.

Although KalbTGase and MTGase have only 28% sequence iden-
tity, they are structurally conserved, as it is shown in Fig. 1. The
superposition of MTGase and KalbTGase structures highlights a
conserved core domain composed of a central b-sheet flanked by
a-helices. In the active site pocket, located in a surface depression,
it is possible to notice the structural conservation of the active site
residues Cys-Asp-His. It is also possible to notice that KalbTGase
has very short surface loops, looking more compact than MTGase.

Despite the preservation of the catalytic triad and of the core
domain structure, the differences in terms of amino acids compo-
sition and compactness affect the specificity of these two protein
molecules, which are hence very different. KalbTGase, although
possessing basic microbial TGase activity (1.65 units/mg), has
low or undetectable activity with many substrates recognized by
conventional MTGase, resulting in a higher selectivity. The motif
YRYRQ seems to be the best glutamine substrate and the motif
RYESK the best lysine substrate of KalbTGase [7]. Due to this high
selectivity, it was suggested to use KalbTGase for the production of
therapeutic antibody-drug conjugates for enhanced drug delivery
[7].

Here we present a computational study investigating differ-
ences and similarities between MTGase and KalbTGase structures,
based on multiple runs of molecular dynamics (MD) simulations at
300 K. We evaluate the flexibility of the two enzymes, the varia-
tions of the volume of the active site and compare their conforma-
tional dynamics. Two additional runs at 335 K and 355 K are used
to explore in a preliminary way any sensitive temperature-
dependent deviations from the observations at 300 K. Our simula-
Fig. 1. Structural overlap of KalbTGase and MTGase. KalbTGase and MTGase are represen
for the analyses are represented as lines (deep blue for KalbTGase, sand for MTGase) wit
arrows point to the surface loops flanking the active site; the latter are shorter in KalbTG
the reader is referred to the web version of this article.)
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tions suggest that at room temperature KalbTGase is less flexible
than MTGase, and that its catalytic pocket is narrower than the
one of MTGase, in agreement with KalbTGase higher specificity.
At higher temperature, differences between the two enzymes
could be reduced, thus operating conditions might tune the reac-
tivity of KalbTGase towards different substrates.
2. Methods

2.1. MD simulation parameters

MD simulations were performed on the structures of both
KalbTGase (PDB code: 5M6Q) [7] and MTGase (PDB code: 3IU0)
using GROMACS 5.0 [8]. The structure of MTGase has been modi-
fied to remove the amino acids numbered from 9 to 33 in the
pdb file, belonging to the signal peptide, thus removing an isolated
fragment, considering that the PDB structure lacks further amino
acids up to the number 48. The two starting pdb files were pre-
pared for the submission using CHARMM-GUI Simulation Input
Generator [9–10] and, after visual inspection of the molecules, by
manual editing. The two proteins were then solvated in a cubic
box (box volume: 930.934 nm3 and 557.752 nm3 for MTGase and
KalbTGase, respectively), filled with water (29,992 molecules for
MTGase, 17,809 for KalbTGase) and neutralized with chloride and
potassium ions placed randomly in the simulation box (final con-
centration: 150 mM). Ions and water molecules are positioned
far from the active sites and do not interact stably with the pro-
teins. Potassium and chloride ions are commonly added to the
simulation box in the quantity necessary to compensate the sys-
tem charges and approximate an average ionic strength resembling
ted in cyan and yellow cartoons, respectively. The active site pockets residues used
h the catalytic triad shown in sticks (orange in KalbTGase and red in MTGase). Red
ase than MTGase. (For interpretation of the references to color in this figure legend,
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the cellular environment. The possible effects of counter-ions’ size
are considered not relevant for this study, as we are analyzing the
differential behaviors of two systems under similar simulation
conditions (see under Results and Discussion). For all the prepara-
tion and production runs we used the CHARMM36 [11] force field
with its modified TIP3P water model [12], chosen for compatibility
with the CHARMM force field and according to suggestion of its
manuals and documentation. The CHARMM36 force field was used
to parametrize the system. The systems were first minimized by
applying steepest descent minimization, setting the cut-off for
short-range electrostatic and van der Waals interactions to
1.2 nm. Default parameters were used for vdwtype (=Cut-off),
vdw-modifier (=Potential-shift-Verlet), coulombtype (=PME),
coulomb-modifier (=Potential-shift-Verlet). Minimization stopped
when the maximum force reached a value lower than 1000.0 kJ/-
mol/nm. Equilibration steps with position-restrained MD simula-
tions were run in NVT and NPT conditions for 500 ps,
respectively. For the NVT equilibration, the Berendsen thermostat
[13] was applied; for NPT equilibration, the Berendsen barostat
[13] was added. At the end of the equilibration, for each system,
we performed five independent MD simulations of 350 ns in NPT
conditions at a temperature of 300 K. Additionally, one 300 ns-
long simulation in NPT conditions at the temperature of 335 K
and one 300 ns-long simulation in NPT conditions at a temperature
of 355 K were also performed to explore in a preliminary way the
behavior of the proteins in the wider range of industrial conditions.
During the production runs, the Berendsen barostat was replaced
with the Parrinello-Rahman barostat [14], and the temperature
coupling was obtained using the velocity rescaling thermostat
[15]. The equations of motion were integrated using the leap-
frog algorithm [16], keeping all bonds constrained with the LINCS
algorithm [17]. Long range electrostatic interactions were evalu-
ated using the Particle Mesh Ewald [18] method.

2.2. Analyses of fluctuations

The root mean square fluctuations (RMSF) of atomic coordi-
nates were calculated with GROMACS tool gmx rmsf over non-
overlapping time windows of 2 ns length. The average value per
residue at 300 K was reported on the crystal structures (Fig. 2)
using PyMOL open-source [19]. RMSF profiles were plotted using
the XMGrace software [20] (supplementary Fig. S2).

The deviation of each run from the starting structure was mon-
itored by calculating the root mean square deviation (RMSD) of
atomic coordinates for each snapshot after optimal alignment to
the initial structure. Both RMSF and RMSD were calculated only
on the Ca atoms. Principal component analysis (PCA) was run on
the coordinates of Ca atoms using GROMACS.

2.3. Active site pocket volume analysis

The analysis of the volume of the active site in the crystallo-
graphic structures has been performed with the POCASA server
(https://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html) [21]
with the following settings: Probe radius: 2 Å; Single-Point Flag
(SPF): 16; (Protein-Depth Flag (PDF): 18; Grid size: 1.0 Å. The anal-
ysis of the volume variation of the catalytic pocket during all the
MD simulations was tested with two different web servers:
Fpocket [22] and MDpocket [23] and finally calculated on the
whole trajectory with the desktop version of MDpocket [24].
Fpocket was used to perform the initial pocket detection and its
output was a useful reference to prepare the input pocket
file needed for the analysis performed by MDpocket on the
trajectories. The first step of the analysis consists in the definition
of a bounding box surrounding a specific region of the structure,
which gets inspected to identify pockets on the protein surface of
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the reference structure. The identified pockets are tracked along
the trajectory by MDpocket, which calculates their volume and
other geometric properties (like the solvent accessible surface area
or an index of hydrophobicity). It is possible to apply these tools on
the whole surface in a completely unsupervised way, but, depend-
ing on the protein size, the computational slow-down can be rele-
vant; also, we are only interested in determining the plasticity of
the active site. The initial region selection was done by manually
selecting a list of residues encompassing the catalytic site of both
targets separately. In order for MDpocket to be able to keep track
of a specific pocket along the dynamics, the trajectory had to be
aligned to the initial reference structure. The a carbon atoms of
the whole protein residues were used for alignment. The output
of MDpocket was very noisy and this seemed to be related to the
small fluctuations of the sidechains that modified the protein sur-
face (see supplementary Fig. S4). This resulted in a large standard
deviation of the volume values and there were many snapshots
in which the pocket was not recognized and it was assigned a vol-
ume of 0.0 Å3. A further discussion about this issue is presented in
the result section.

The volume means, mean ranks, and distributions were com-
pared between enzymes and runs using the following statistical
tests: Student’s t-test, Welch’s t-test, Mann-Whitney U test, and
Kolmogorov-Smirnov test, with a significance level of 5%. Block
averaging of the volume trajectories was used for the comparison
of runs. Different tests were used as they have different assump-
tions, as detailed in the Results and Discussion section.

2.4. Featurization and conformational analysis

In order to have a comprehensive view of the protein conforma-
tions, the snapshots from the trajectories at room temperature
were analyzed using a SAPPHIRE plot [25] and a Markov State
Model (MSM) [26] built on top of it.

The general steps required to construct an MSM are the follow-
ing: featurization, dimensionality reduction, and clustering [27].
The first step is the choice of a set of features to describe the sys-
tem under study. As we are mainly interested in the dynamics of
the active site, our starting features were the phi and psi backbone
dihedral angles (separated into sin and cos components) of a set of
62 residues encompassing the catalytic site, for a total of 248 fea-
tures. The residues were chosen based on their distance from the
catalytic triad and are depicted in Fig. 2, panel B (non-gray resi-
dues). The full list is given in Table S1.

The initial features were transformed using time-lagged inde-
pendent component analysis (tICA) [28–30], with a lag-time of
500ps, and scaled according to a kineticmapping [31]. As KalbTGase
and MTGase show a similar extent of conformational variation on
the single-trajectory timescale (175 ns), in both cases only the first
13 tICA components (accounting for 61% of the total kinetic variance
for KalbTGase and 57% for MTGase) were kept for the next steps of
theanalysis. These roughlyaccount fordynamicmodesup to thefirst
large gap in the eigenvalue spectrum of the tICA transform.

In order to identify the residues participating in the slowest
conformational transitions, from the tICA decomposition we calcu-
lated the absolute value of the correlation between features and
tICA independent components (TIC). We considered only
correlations with the 13 components that were kept after dimen-
sionality reduction. Additionally, for each feature, correlation
absolute values were weighted by the corresponding eigenvalue of
the tICA transformation matrix and summed. For each residue we
obtained four values (sin and cos components of phi and psi), which
were summarized by taking the maximum of the sin and cos values
and averaging between phi and psi. The calculated residue-level
feature-TIC correlation values could be encoded as B-factors and
mapped onto the structure of the enzymes (Fig. 2, panel B).
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The tICA features, after dimensionality reduction, were selected
to construct the progress index (PI), using a published approximate
algorithm [32] based on the pre-clustering of the trajectory snap-
shots with a tree-based algorithm [33]. Starting from an arbitrary
snapshot (in our case the centroid of the largest cluster), the PI con-
sists of a reordering of a trajectory by sequential addition of the
snapshot that is closest to any of the already added ones; the pair-
wise distance between snapshots was calculated as the Euclidean
distance between features. The PI groups together snapshots that
are in the same free energy basin, and it can be used to get a com-
prehensive overview of all the configurations sampled. The
approximate PI algorithm used 6000 maximum search attempts
for the next neighbor in the construction of the minimum spanning
tree, with a search depth covering all the 16 levels of the clustering.
Additionally, the folding of the leaves was set to 3 in order to
prevent snapshots of fringe regions to accumulate towards the
end of the basin [34].

The SAPPHIRE plot [25] consists of a collection of different
annotations that are plotted along the PI-ordered trajectory (see
Fig. 3 and supplementary Fig. S9). The dihedral angles chosen for
the geometric annotation of the SAPPHIRE plot were those with
the largest absolute value of correlation with the selected tICA
components (we considered the maximum between sin and cos
components); as for the feature-TIC correlation, each value is
weighted by the corresponding eigenvalue of the tICA transforma-
tion matrix. The set of dihedrals for annotation is determined sep-
arately for KalbTGase and MTGase, but the two selections are
merged into a single list of largely corresponding dihedrals (ac-
cording to the structural alignment), which makes it easier to com-
pare the SAPPHIRE plots of the two enzymes. Additionally,
sidechain dihedrals of the catalytic triad are also shown.

To build the MSM, we used the recently developed SAPPHIRE-
based clustering (SbC) method [35], which turns the visual notion
of SAPPHIRE plot basins into a quantitative clustering algorithm.
The number of bins nx and ny, along the x and y axis respectively,
which determines the smallest basins that can be distinguished,
was set to 1000, with nx = ny, resulting in 45 clusters for KalbTGase
and 66 for MTGase. The corresponding discretized trajectory was
used to infer the transition matrix of an MSM; the sliding-
window method to count the transitions was used and detailed
balance was imposed by naïve symmetrization of the count matrix,
as implemented in the CAMPARI software package (keyword CAD-
DLINKMODE set to 4). The MSM lag-time was set to 2 ns after mon-
itoring the implied timescales (supplementary Fig. S7).

The lag-time for tICA construction and the number of bins nx for
running the SbC were chosen by optimizing the variational
approach for Markov processes (VAMP)-2 [36] score through grid
search. This score gives an indication on how well the model
approximates the slow modes of the true propagator. For different
MSM lag-times (2 ns, 3 ns, and 5 ns) VAMP-2 scores were calcu-
lated by doing leave-one-out cross-validation on the five trajecto-
ries at room temperature. Results are shown in supplementary
Fig. S8, grouped by either tICA lag-time or number of bins nx.
The MSM construction is robust with respect to the choice of the
latter hyperparameters. However, the chosen value of 0.5 ns (50
snapshots) for the tICA lag-time and 1000 for nx seem to provide
the best VAMP scores across the considered MSM lag-times. The
choice of lag-times and hyperparameters was determined on the
trajectories of KalbTGase at 300 K, but then kept for the analyses
at 335 K and 355 K, for both KalbTGase and MTGase.

SbC clusters were grouped into larger macrostates using the
PCCA+ algorithm [37]. The number of macrostates (which is a
hyperparameter and was set to 11 and 12 for KalbTGase and
MTGase, respectively) was chosen by looking at the spectral gap
in the eigenvalues of the MSM transition matrix. Macrostates were
used to generate a network depiction summarizing the whole sam-
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pling at 300 K (see Fig. 4 and supplementary Fig. S10). The cartoons
shown for each state of the network are the representative confor-
mations of the SbC clusters contained in the same macrostate. The
representative of the largest SbC cluster is in color, with the cat-
alytic triad in sticks, and the representatives of all other clusters
are in transparent grey. A SbC representative was chosen as the
snapshot that is closest to the average conformation across the
cluster, where the average was calculated on the chosen features
describing the system. The edges of the network are proportional
to the inverse of the mean first passage time (MFPT) between
PCCA+ states. The microscopic MFPT between SbC clusters was cal-
culated from the estimated transition matrix using the formulas
for Markov chains [38] and it was then coarse-grained [39] to get
the MFPT between macrostates.

tICA featurization, VAMP scores, and PCCA+ regrouping were
calculated with PyEMMA v2 [40]; the PI and MSM transition
matrix were evaluated using CAMPARI v4 (http://campari.source-
forge.net/) and the SAPPHIRE-based clustering and plots were done
with the companion CampaRi R package [41–42]; network layouts
were generated with the igraph R package [43].
3. Results and discussion

3.1. Fluctuations of the catalytic site

From the comparison of their RMSD plots (Supplementary
Fig. S1, panels a-b), the five MD simulations of KalbTGase and
MTGase at 300 K seem to have a very similar evolution, and no par-
ticular alterations are detected, suggesting that both systems are
quite stable on the timescale of 350 ns with no major conforma-
tional rearrangements and no significant differences among the
runs.

The RMSF analyses performed on KalbTGase highlight that the
most flexible regions are the small peripheral loops joining the sec-
ondary structure elements, some of which are directly connected
to the active site residues (Fig. 2, panel A on the right, and
Fig. S2, panel A). The core of the protein, comprising the catalytic
site, instead, seems to be very rigid.

In MTGase, the most flexible regions largely correspond to the
homologous ones in KalbTGase and are predominantly the periph-
eral loops connected to the active site residues (Fig. 2, panel A on
the left, and Fig. S2, panel B), but since these loops are longer in
MTGase, their movements probably do not allow the closure of
the active site. Moreover, from the comparison of the two RMSF
profiles, it is possible to see that the detected fluctuations are
higher in MTGase than in KalbTGase, with a maximum average
RMSF of 0.20 nm versus 0.12 nm, respectively, at the level of a
2 ns time window. An exception is represented by the small loop
in front of the catalytic Asp (residues 208–214 in KalbTGase and
299–305 in MTGase), which shows similar fluctuations in both
enzymes. Overall, these results suggest that MTGase has an
enhanced flexibility with respect to KalbTGase in the regions con-
nected to the active site, and this could explain its wider specificity
and lower selectivity.
3.2. Analysis of the volume of the catalytic site pocket

In order to investigate in more details the reasons that lead to
enhanced specificity of KalbTGase with respect to MTGase, a dee-
per analysis on their active site pockets has been performed. The
volume of the catalytic sites in the crystallographic structure of
KalbTGase and MTGase resulted 133 and 213 Å3, respectively, with
a difference of 80 Å3 representing more than 1/3 of the MTGase
catalytic site volume. The analyses carried out on the MD simula-
tions performed at 300 K demonstrate that, despite the fluctua-



Fig. 2. RMSF and feature-TIC correlations mapped on the crystal structure at 300 K. A Average RMSF profiles of MTGase (left) and KalbTGase (right) at 300 K. Average RMSF
values (supplementary Fig. S3), from small to large, are mapped to the color (blue-green–red color scale) and the tube width of the cartoon (from small to large). Sidechains of
catalytic residues are in sticks. B Feature-TIC correlation values (see methods section for details) are mapped on the crystal structure of MTGase (left) and KalbTGase (right).
Small to large values are encoded by the color (blue-green–red) and the tube width (small to large). Sidechains of the catalytic residues are in sticks. Residues for which no
correlation value was calculated are in grey. For both panels, numerical values were encoded in the PDB as B-factors and visualized with Pymol. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. SAPPHIRE plot for KalbTGase at 300 K. Snapshots are reordered according to the progress index (PI). The global and localized cut (blue and red lines) represent a
pseudo-free energy profile and separate the snapshots in different basins. The dot pattern reports (vertical axis) for each PI value, the occurrence time along the real
trajectory. The five runs at 300 K were concatenated and are separated by horizontal black lines. The upper part of the plot reports the following annotations as heatmaps,
from bottom to top: volume of the catalytic pocket; PCCA+ assignment to 11 metastable states; selected set of relevant dihedral angles (see materials and methods section for
the choice criteria). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Conformational network for KalbTGase at 300 K. A Each node corresponds to a PCCA+ state and the node size is proportional to the number of snapshots. The edge
width reflects the inverse of the MFPT between states. The ring color is the average volume of the catalytic site in the state. The color scale is reported in panel C and it is the
same as in the SAPPHIRE plot of Fig. 4. B Coarse-grained MFPTs between PCCA+ states. C Conformational network with a grid layout. Each node contains the cartoons of the
SbC cluster representatives belonging to the relative macrostate. The centroid of the largest cluster is in color, the rest are in gray. Sidechains of the catalytic residues are in
sticks. The ring color is the same as in panel A.
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tions, the active site of KalbTGase is roughly 50 Å3 smaller than
that of MTGase (Table 1 and supplementary Fig. S3). Indeed, con-
sidering the total sampling at 300 K, it is possible to estimate that
KalbTGase active site has an average volume equal to 196.96 Å3

(median value = 186.00 Å3), whereas MTGase catalytic pocket
has an average volume equal to 245.75 Å3 (median value = 240.8
2 Å3). Moreover, the range of values reached by the volume of
the active site of KalbTGase (25% percentile at 132.63 Å3 and 75%
percentile at 266.62 Å3) is also smaller than the one of MTGase
(25% percentile at 165.01 Å3 and 75% percentile at 318.89 Å3).
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In order to assess whether the difference in the volumes of the
two active sites is significant, we ran several statistical tests.

Specifically, we used Mann Whitney U test, Welch’s t-test and
Student’s t-test, with the alternative hypothesis of KalbTGasehaving
a smaller binding site volume than MTGase. The volume distribu-
tions are not normal and do not always have the same shape (sup-
plementary Fig. S3, panel A), motivating the use of Mann Whitney
U test, which compares the mean ranks (and not the median) of
the distributions. Moreover, even though the volumes are
themselves not normally distributed, for sufficiently large samples



Table 1
Analysis of volumes of the active site pocket in MD simulations.

Protein 300 K 335 K 355 K

mean* sd* mean sd mean sd

KalbTGase 197 88 153 83 161 86
MTGase 246 111 200 96 180 91

KalbTGase MTGase

mean sd mean sd

RUN1 181 88 245 88
RUN2 218 84 222 117
RUN3 181 88 314 112
RUN4 214 85 201 108
RUN5 189 89 242 93
MEAN** 197 18 246 43

* The reported values are calculated for each enzyme on the whole sampling at 300 K (5 runs).
** The reported mean and standard deviation values at 300 K are calculated as the mean and standard deviation of the means of the five runs.
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we can still run aWelch’s t-test and a Student’s t-test to compare the
means if the central limit theorem holds [44]. Welch’s t-test assumes
unpaired samples with unequal variance; however, as the variances
of the single runs are close to each other (Table 1), we also ran a t-
test, which assumes unpaired samples with equal variance.

The biggest obstacle to a rigorous analysis comes from the fact
that we are dealing with MD snapshots, thus volume values are
time-correlated, and this is incompatiblewithmost statisticalmeth-
ods, which assume independence of the samples. For this reason,
instead of using the raw volume data, we first used as independent
samples the means of the five trajectories; these values can be con-
sidered independent, possibly except for the fact that the trajectory
starting points are the same. All three types of tests confirmed that
the volume of the catalytic site of KalbTGase is smaller thanMTGase
at a 0.05 significance level (p-values between 1.6 and 3.2%).

To further support our claim, we also repeated the tests using
samples of block-averaged values calculated on each trajectory,
this time comparing every possible combination of runs of MTGase
and KalbTGase. With a block size of 200 snapshots (non-
overlapping blocks of 2 ns), using the Mann-Whitney U test, the
null hypothesis could be always rejected except for the compar-
isons involving combinations of runs 2 and 4 of both MTGase
and KalbTGase and additionally in runs number 3 and 5 of KalbT-
Gase versus run number 4 of MTGase. Using larger blocks (3500
snapshots, which equals to 35 ns and roughly 10 samples per tra-
jectory), more tests could not be rejected at the chosen significance
level (0.05), but all of the latter involved comparisons to trajectory
2 and 4 of MTGase, which have a lower mean with respect to the
other MTGase trajectories (Table 1). The same tests were also run
on the raw volume data without block averaging, yielding similar
results, although hampered by sample dependence.

Rather than comparing the means, the two-sample
Kolmogorov-Smirnov test compares the distributions and requires
in first instance the independence of the distribution estimates,
which is the case for independent trajectories of different enzymes.
Using this test on the whole volume distributions (i.e. combining
the values of the five runs for each enzyme) also agreed to the
hypothesis that the volume of KalbTGase is smaller than MTGase
(p-value < 1e�15).

There are two important caveats to this analysis: first, snap-
shots, for which MDpocket failed to identify the pocket (returning
a null volume), were discarded; indeed, by looking at the volume
distributions in panel B of supplementary Fig. S3, the null values
look like an artifact. However, treating these values as true zeros
does not change the results significantly and the outcomes of the
statistical tests are comparable. In particular, both the Mann-
Whitney U test on the means and the Kolmogorov-Smirnov test
on the whole sampling accept the alternative hypothesis that the
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volume of the catalytic site of KalbTGase is smaller than the one
of MTGase.

Second, both the Welch’s t-test and the Student’s t-test assume
normality of the distribution of the sample mean; this is often
assessed by verifying normality of the sample population, which
is hardly the case here (supplementary Fig. S3), although these
tests are relatively robust with respect to deviations from normal-
ity [45]. The two tests give indeed results comparable to the Mann-
Whitney U test. Moreover, for large enough samples, or for testing
directly using the independent trajectory mean values, the normal-
ity of the distribution of the sample mean derives from the central
limit theorem [44].

It is important to point out that the similar variance of the vol-
ume distributions for MTGase and KalbTGase might indeed be
related to the comparable size of the volume oscillations returned
by MDpocket. The changes in volume of the active site throughout
an MD run are governed by modifications of the protein surface,
which are ultimately determined by fluctuations of sidechains
and the slow conformational rearrangements of the binding site.
In the conformational analysis paragraph, we try to qualitatively
correlate the changes in volume with conformational changes. In
order to extract more signal from the volume time trace, the values
shown in the SAPPHIRE plot annotation are smoothed using a mov-
ing average filter with a window of 0.5 ns, excluding zero values.

Our analyses suggest that KalbTGase has a smaller active site,
suitable to explain its higher selectivity in the choice of substrates;
on the other hand, the larger size of the active site of MTGase may
guarantee more adaptability to different substrates. It is likely that
the enhanced fluctuations of the MTGase loops closest to the active
site region affect the distance of the catalytic residues during all
the MD simulation.
3.3. Feature-TIC correlations

Correlations between the dihedral angles describing the catalytic
pocket and the 13 tICA components considered are useful to identify
the residues involved in the slowest modes of the dynamics. The
residue-level absolute values of the feature-TIC correlations are
mapped on the crystal structures of the two enzymes in Fig. 2, panel
B. It should be stressed that, differently from panel A, where the val-
ues of RMSF have the same scale, here the values of the correlations
refer to different tICA transformations and dynamic modes, hence
they cannot be compared between the two enzymes. However, they
still give valuable information about the regions of the active site
undergoing backbone conformational changes. Values are reported
only for the residues used to calculate the tICA transformation (all
the others are in grey).
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For MTGase the regions with the major changes are Tyr 301 and
the terminal a-helical loop containing the catalytic residue Cys 63.
Tyr 301 is placed in front of the catalytic site and its movement
might affect the volume and accessibility of the latter. Moreover,
changes directly affecting the catalytic residue Cys 63 might also
affect the enzyme function.

For KalbTGase, the largest conformational variability is located
on the loop connected to catalytic Asp 175 (residues 172–174);
this is also the loop showing some of the largest fluctuations in
the RMSF profile. Indeed, by comparing the feature-TIC correla-
tions (Fig. 2B) with the RMSF profiles (Fig. 2A), we can see that
the regions of the catalytic pocket undergoing backbone changes
do not show large flexibility and fluctuations and the two quanti-
ties measure different types of motion. Note that loops with large
RMSF values might also show large backbone rearrangements but
these are not considered in the featurization as they are further
away from the catalytic cleft.

3.4. Conformational analysis

The conformational analysis is used to gain a structural insight
and corroborate the previous observations. The SAPPHIRE plot in
Fig. 3 gives an overview of the cumulative sampling for KalbTGase
at 300 K. The plot consists of a reordering of the trajectory snap-
shots based on geometric similarity (and assuming the latter corre-
sponds to kinetic vicinity). The cut functions (blue and red lines in
the lower part of the plot) represent pseudo-free energy profiles
that help identify the barriers between different basins, and the
dot pattern reports (on the y axis) the actual time of occurrence
of the reordered snapshots; the 5 runs are separated by horizontal
black lines. The upper panel of the plot features several heatmap
annotations, which are snapshot-based and help identify the dif-
ferences among the basins. Specifically, the following annotations
are reported starting from the bottom: the volume of the catalytic
pocket (after applying a moving average filter, see 3.2 section); the
PCCA+ metastable state the snapshot is assigned to; the value of
the most relevant backbone dihedral angles; additionally, side-
chain dihedrals of the catalytic residues are also included.

A coarse-grained network at the level of the PCCA+ metastable
states (Fig. 4, for KalbTGase) is useful to visualize the conforma-
tions identified by the SAPPHIRE plot. It should be noted that the
PCCA+ algorithm returns the most metastable grouping of the
SbC clusters into the specified number of states, viz. 11 for KalbT-
Gase and 12 for MTGase. This does not mean that states are neces-
sarily homogeneous, but clusters in the same state have a shorter
kinetic distance than clusters assigned to different states.

The size of the network vertices in panel A is proportional to the
number of snapshots and the color reflects the average volume of
the catalytic site in that state. The width of the edges accounts
qualitatively for the kinetic distance as it is proportional to the
inverse of the mean first passage time (MFPT) between two states.
All the coarse-grained MFPT values are reported as a heatmap in
panel B. Panel C rearranges the network on a grid layout adding
the cartoons of the centroids of the SbC clusters composing the
state. The centroid of the largest SbC cluster is in color, the others
are in grey to suggest the heterogeneity of PCCA+ states. State
numbering and coloring is the same in the SAPPHIRE and the net-
work plot.

The analysis identifies one large heterogeneous basin (state 11,
in magenta), encompassing approximately one fourth of the sam-
pling (from PI �25,000 to �70,000). This basin shows recurrence
in all the 5 runs and includes many of the starting snapshots of
each simulation. Although it is very heterogeneous and many
sub-basins can be distinguished, all snapshots are assigned to the
same state. State 11 is kinetically close to other large basins, in par-
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ticular to 7 and 10, from and to which frequent direct transitions
are sampled. There are only minor differences among them, which
are localized on neighboring regions of the binding pocket (resi-
dues 210–212 and 128–133). Moreover, state 10 (pink), that is sep-
arated from 11 by a low barrier, is characterized by a 180� flip of
the CHI2 angle of His 188. The same flip is observed in state 8 (PI
�140,000, dark blue), where notably also Asp 175 has a unique
reorientation, no longer pointing towards His 188. In this way,
the possibility of a hydrogen bond between the carboxyl group of
Asp 175 and the imidazole group of His 188 is lost.

The rest of the SAPPHIRE plot shows smaller basins that are
often sampled in single runs. These states are in general more com-
pact and homogeneous, as it is demonstrated by the low number of
SbC clusters and by the dihedral and volume annotations. The lat-
ter shows indeed some partitioning with the basins, although it is
not a geometric variable directly employed for the generation of
the PI. This means that the overall volume is largely determined
by the backbone conformation of the catalytic pocket. State 1
and 5 are kinetically the most distant from any other states, with
estimated MFPTs to reach them between 2 and 2.5 ls. This is
because they are characterized by slow conformational changes
which are sampled only once throughout the trajectory, as it is vis-
ible from the dot pattern in Fig. 3.

The analogous SAPPHIRE and network plots for MTGase at
300 K are presented in supplementary Fig. S9 and S10 for compar-
ison. The SAPPHIRE plot for MTGase appears more structured and
includes many unique sub-basins with little to no recurrence.
SbC identifies more clusters; however, the number of larger basins
sampled is comparable between the two enzymes. The dihedral
annotations on the SAPPHIRE plot of KalbTGase (Fig. 3) and
MTGase (Fig. S9) mainly report corresponding angles for compari-
son. Overall, dihedral angles show the same average pattern, which
means the two enzymes share the same fold; an exception to this is
represented by the first three dihedrals which are part of the N-
terminal loop region of the structures and differ substantially.

As it was already observed from the feature-TIC correlations of
Fig. 2, the regions with most of the conformational changes differ
between the two enzymes. For KalbTGase, most of the changes
involve the catalytic Asp 175 and the loop next to it. Residues
210–212, which also exhibit some changes, are spatially adjacent
to the former loop. The rest of the structure does not undergo
any large variations, except for states 2 and 3, where the short turn
including Cys 46 rearranges (Fig. 4, panel C). The latter conforma-
tional change is also visible in states 7 and 3 of MTGase (supple-
mentary Fig. S10).

MTGase shows even more conformational variability of the lat-
ter region containing catalytic Cys 63 (residues 61–64), whereas
the loop region next to the catalytic Asp 254 (residues 251–254)
keeps the same conformation throughout most of the sampling.
These very few residues also have lower RMSF values than the cor-
responding ones in KalbTGase (despite the rest of the loop reaching
higher fluctuations). The other region showing most of the confor-
mational plasticity for MTGase is the loop downstream of His 273;
its movement might be coupled to the conformational changes of
Cys 63, to which it is spatially close. Tyr 301 in MTGase and the
corresponding Leu 210 in KalbTGase are also involved in transi-
tions; interestingly, the sidechains of these two residues are placed
on top of the catalytic site.

Counter-ions play a crucial role in MD simulations and they are
commonly added to the simulation box to compensate the system
charges and approximate an average ionic strength resembling the
cellular environment. The size of the ions (van der Waals radius)
affects their behavior in solution, balancing inter-ion electrostatic
interactions and partial dehydration. In our study, we compared
the results obtained for MTGase and KalbTGase under similar
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conditions of simulations. Therefore, any possible effect on the
results due to the choice of the counter-ions can be considered a
methodological and systematic effect, not influencing the differen-
tial observation we made.

As concerns the sidechains of the catalytic residues, the CHI1 of
cysteine (Cys 46 in KalbTGase and Cys 63 in MTGase) is allowed to
spin quite freely. The sidechains of the aspartate and histidines
(Asp 175, His 188 for KalbTGase; Asp 254, His 273 for MTGase)
are locked in the same conformation throughout the MTGase sim-
ulations; on the contrary, they see some structural changes in
KalbTGase.

The volume of the catalytic site of MTGase also partitions quite
well with the basins and it shows a much larger range of values
than for KalbTGase.

3.5. Extension of the results to higher temperatures

In order to perform a preliminary analysis to the wide range of
temperatures used in industrial applications, we ran two 300 ns-
simulations at 335 K and 355 K and compared them to the ones
at 300 K.

By looking at the RMSD time trace (Fig. 5), the run on MTGase at
335 K (red line) stays close to the corresponding curve at 300 K,
meaning that it possibly samples similar regions of the conforma-
tional space. On the contrary, the RMSD of the run on KalbTGase at
335 K (yellow line) diverges more, sampling conformations that
are geometrically further away from the crystal structure. The
PCA analysis (supplementary Fig. S5, panels C-D) also shows more
overlapping states for MTGase as a function of time.

At 355 K the RMSD curves for both enzymes (blue and pink
lines) show a marked increase, with onset at the beginning of the
run, and they reach values of RMSD that are twice as large as the
ones at 300 K. The PCA plot confirms the temporal evolution
through separate states in the reduced space of the first two
components.

For both enzymes, the RMSF analyses at 335 K show an incre-
ment of the fluctuations of the same regions already highlighted
in the simulations at 300 K (Supplementary Fig. S6, panel A-B). In
MTGase, the RMSF seems to be more affected than the RMSD by
the rising of the temperature. From these results, it is possible to
predict that the rising of temperature mainly affects the longer
loops, whereas the catalytic core remains stable. In fact, it has been
recently observed that the increase in temperature may affect the
lifetime of H-bond interactions, while the total number of H-bond
interactions is less influenced [46]. This means that longer loops,
Fig. 5. RMSD comparison between MD simulations of MTGase and KalbTGase. The RMS
335 K (red line) and at 355 K (blue line), and compared with the MD simulation of Ka
interpretation of the references to color in this figure legend, the reader is referred to th
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lacking characteristic interactions of the secondary structures
and being intrinsically flexible [47], are more suitable to increasing
their flexibility. The RMSF profiles at 355 K (supplementary Fig. S6,
panel C-D) show that, as expected, the fluctuation peaks are even
higher than the peaks related to the MD simulation at 335 K and
are still associated with the most flexible regions of the molecule
already identified. Moreover, these regions reach higher RMSF val-
ues in KalbTGase than MTGase, at both temperatures.

We also performed the active site pocket volume calculations
on the runs at 335 K and 355 K, with additional statistical tests
to compare the means, mean ranks and distributions of the volume
values between the two proteins and with respect to the runs at
300 K (for the latter we considered the cumulative sampling of
the 5 runs). The mean volume and standard deviations, excluding
the null volume structures, are reported in Table 1. The standard
deviation is comparable between the runs and does not seem to
be influenced by the temperature rise, thus it should largely be
attributed to the noise in the determination of the pocket. For
KalbTGase, the increase of temperature at 335 K induces a marked
decrease of the active site pocket volume. A further temperature
increase to 355 K only results in a minor increase of the mean vol-
ume with respect to the value at 335 K. On the other hand, for
MTGase the volume decreases constantly as temperature rises.

In order to have a collective view of the sampling of each
enzyme we generated a SAPPHIRE plot including the runs at all
temperatures (supplementary Fig. S11 for KalbTGase and S12 for
MTGase). From the dot pattern, it can be seen that the run of KalbT-
Gase at 335 K has some recurrence with the runs at 300 K at the
beginning and in the middle of the simulation. Additionally, it dis-
covers two relatively large unique states (around PI 140,000).

The run on MTGase at 335 K mainly explores new territory, but
it also discovers only a few large states (see PI values around
180,000).

On the contrary, for both proteins the run at 355 K discovers a
multitude of very small states that are added at the end of the PI.
This confirms that they are further away from the initial structures
and such a high temperature increases the speed of conformational
transitions.

The volume annotation still shows partitioning with the basins
and at higher temperature, on average it samples conformations
with a smaller volume of the catalytic pocket. The SAPPHIRE plot
confirms that there is almost no recurrence at high temperature;
hence the observations about the trends of volume variation with
temperature might be hindered by the limited sampling at 335 K
and 355 K.
D is calculated on the Ca for the MD simulation of MTGase at 300 K (black line), at
lbTGase at 300 K (green line), at 335 K (yellow line) and at 355 K (pink line). (For
e web version of this article.)
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4. Conclusion

MD simulations performed on KalbTGase and MTGase show
that at 300 K both proteins preserve the conformation of the cat-
alytic site and its closest areas, and their flexibility is mainly
focused in the peripheral loops. In MTGase, maximum fluctuation
values are higher than in KalbTGase, due to the presence of longer
loops. Some fluctuations have been detected also in the linking
regions between the catalytic His and Asp, and in particular they
reach higher values in MTGase than in KalbTGase. Thus, from these
results, it appears that KalbTGase at room temperature is a more
rigid protein than MTGase.

The conformational analysis shows that slow conformational
changes also involve regions of the binding pocketwhich are not flex-
ible. This can be due primarily to two reasons: first, the separation of
the timescales that are considered by the two types of analyses. Sec-
ond, theoverall foldof the catalytic region ismaintained,henceneigh-
boring dihedrals often undergo changes that compensate each other,
not resulting in large fluctuations. Conformational changes also
involve regions adjacent to the catalytic residues and can perturb
them, as it happens for the short turn containing the Cys and the loop
next to the Asp. In general, in both enzymes, the catalytic Cys is rela-
tively free to rotate, whereas His and Asp assumemetastable orienta-
tions. In particular, for MTGase no conformational changes involving
the sidechains of the catalytic His and Asp are sampled.

The average volume of the catalytic pocket is smaller for KalbT-
Gase than for MTGase, and for both proteins, it is largely deter-
mined by the overall backbone fold. However, a sequence
component due to the sidechains is also plausible, and it would
also partially explain the volume oscillations.

From MD simulations performed at higher temperatures, both
proteins show enhanced flexibility. As a possible consequence of
the increased disorder in KalbTGase, a modification of the catalytic
site could result in enhanced catalysis of different substrates with
respect to room temperature. The volume of the catalytic pocket
shows a general trend to shrink for both proteins and, although
the volume of KalbTGase is consistently smaller than the volume
of MTGase, the difference becomes narrower.

Our analyses suggests that increasing temperatures might tune
the activities of these two enzymes in a different way, making
KalbTGase less specific, whereas MTGase could become less active
and/or more specific. Further studies will be necessary to prove it,
but this study paves the way for a scenario in which both proteins
could be used for broader applications.
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