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A B S T R A C T

Background: Modern techniques for multi-neuronal recording produce large amounts of data. There is no au-
tomatic procedure for the identification of states in recurrent voltage patterns.
New method: We propose NetSAP (Network States And Pathways), a data-driven analysis method that is able to
recognize multi-neuron voltage patterns (states). To capture the subtle differences between snapshots in voltage
recordings, NetSAP infers the underlying functional neural network in a time-resolved manner with a sliding
window approach. Then NetSAP identifies states from a reordering of the time series of inferred networks ac-
cording to a user-defined metric. The procedure for unsupervised identification of states was developed ori-
ginally for the analysis of molecular dynamics simulations of proteins.
Results: We tested NetSAP on neural network simulations of GABAergic inhibitory interneurons. Most simulation
parameters are chosen to reproduce literature observations, and we keep noise terms as control parameters to
regulate the coherence of the simulated signals. NetSAP is able to identify multiple states even in the case of high
internal noise and low signal coherence. We provide evidence that NetSAP is robust for networks with up to
about 50% of the neurons spiking randomly. NetSAP is scalable and its code is open source.
Comparison with existing methods: NetSAP outperforms common analysis techniques, such as PCA and k-means
clustering, on a simulated recording of voltage traces of 50 neurons.
Conclusions: NetSAP analysis is an efficient tool to identify voltage patterns from neuronal recordings.
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1. Introduction

Biological neural networks exhibit intricate wiring architectures,
exceptional variability at the level of single neurons and highly specific
temporal dynamics. The most-used techniques for multi-neuronal re-
cordings are two-photon calcium imaging (Denk et al., 1990; Wang
et al., 2003; Stosiek et al., 2003; Helmchen and Denk, 2005), multi-
electrode arrays (Du et al., 2011; Buzsáki, 2004; Najafi et al., 1990;
Henze et al., 2000), and, more recently, light-sheet fluorescence mi-
croscopy (Ahrens et al., 2013; Dunn et al., 2016). These experiments
produce a very large amount of data with high temporal (more than
15 kHz multi-channel sampling (Li et al., 2016)) and spatial resolutions
(up to 80,000 neurons recorded simultaneously (Ahrens et al., 2013;
Dunn et al., 2016)). Despite these technical advancements, a robust
understanding of neural encoding is still missing (Stevenson and
Kording, 2011; Rolls and Treves, 2011; Romo and de Lafuente, 2013;
Cohen and Kohn, 2011; Yuste, 2015), and an unequivocal matching of
stimuli with neuronal responses is not routinely achievable (Rolls and
Treves, 2011; Cohen and Kohn, 2011; Bialek et al., 1991; Engel et al.,
2001; Shadlen and Newsome, 1998; Harris et al., 2003).

In practice, the most common approach is to derive firing rates from
calcium or voltage recordings using spike sorting or inference (Denk
et al., 1990; Wang et al., 2003; Stosiek et al., 2003; Helmchen and
Denk, 2005; Du et al., 2011; Buzsáki, 2004; Najafi et al., 1990; Henze
et al., 2000) and analyze them using various dimensionality reduction
techniques (Cunningham and Yu, 2014) such as principal component
analysis (Cohen and Kohn, 2011; Harris et al., 2003; Harvey et al.,
2012; Freeman et al., 2014; Lopes-dos Santos et al., 2011; Peyrache
et al., 2009), clustering algorithms (like k-means (Freeman et al.,
2014)), or other correlation-based techniques (Ahrens et al., 2013;
Cohen and Kohn, 2011). Among the most relevant theoretical frame-
works for the analysis of neural recordings we mention here point
process analysis (Kass et al., 2014), generalized linear models (GLMs)
(Truccolo et al., 2005), entropy-based methods (max entropy models
(Schneidman et al., 2006), transfer entropy information routing (Kirst
et al., 2016; Palmigiano et al., 2017)), statistical decoders (maximum
likelihood estimation (Paninski, 2004; Cocco et al., 2017), maximum a
posteriori estimation (Ota et al., 2009), Ising decoders (Schaub and
Schultz, 2012)), manifold analysis (Gallego et al., 2017), trajectory-
based decomposition (Harvey et al., 2012), and graph-based inference
(Pitkow and Angelaki, 2017). Additionally, hidden Markov models
(HMM) have been used to explain how neural networks encode
“hidden” variables, which are indirectly related to external stimuli
(observed variables) (Kollmorgen and Hahnloser, 2014; Vidaurre et al.,
2016).

All these methods define the levels of information content that ap-
pear to be significant for specific stimuli encoded by a given neuronal
population. To do so, the raw data are usually preprocessed and
translated into spikes, i.e., they are transformed from an analog to a
digital representation (Sengupta et al., 2014). For example, one of the
most successful predictors of behavioral context are GLMs (Kass et al.,
2014; Truccolo et al., 2005) which usually require a binary data re-
presentation. This approach subscribes to the fundamental idea that
information is represented by spike-encoded signals (Cohen and Kohn,
2011), which is known to be maximally efficient only at the population
level (Boerlin and Denève, 2011; Boerlin et al., 2013). However, it has
been argued that the (analog) membrane potentials contain valuable
information, e.g., in their sub-threshold variations (Sengupta et al.,
2014; Debanne et al., 2012). Moreover, it has been found experimen-
tally that the spiking rates follow a Poisson-like process with little
regularity at the single-neuron level while the membrane potentials
have been argued to exhibit significant autocorrelation (Gentet et al.,
2010; Yu and Ferster, 2010). For these reasons, here we decided to
focus on raw, analog signals.

We propose NetSAP (Network States and Pathways) for the analysis
of voltage recordings. NetSAP is based on the automatic procedure

called SAPPHIRE (States And Pathways Projected with HIgh
REsolution), developed originally for identifying states along molecular
dynamics simulations of proteins (Blöchliger et al., 2013; Blöchliger
et al., 2014; Blöchliger et al., 2015; Vitalis and Caflisch, 2012). Protein
motion and neuronal recordings share a high degree of complexity
which is inherent to large and flexible molecules and a large set of
neurons in a network, respectively. More precisely, neural networks
and proteins (e.g., enzymes) can populate multiple states with specific
functional roles in the dynamical system. For example, neural networks
alter their functional connectivity depending on the information con-
tent which is transmitted or transformed. Similarly, the activity of an
enzyme is usually modulated by small-molecule modifiers (Baici,
2015), which influence the conformation of the enzyme upon binding.
These states are often metastable, meaning that they have a life time
shorter than the one of the enzyme itself and longer than fluctuations
due to thermal motion. In stochastic dynamical systems this implies
recurrence, as each state can be visited an arbitrarily large number of
times.

We are able to routinely analyze long time series, e.g., long and/or
many trajectories of protein motion from molecular dynamics simula-
tions. This is due to two mitigating factors. First, the scalability of our
method is DN logN where N is the number of snapshots an D is the
dimensionality of an individual snapshot. Second, there are hardly any
overly sensitive parameters to tune. Both advantages together allow a
seamless application to large data sets. Indeed, one of the major diffi-
culties in approaches found in the literature is parameter fitting, which
often scales poorly with the amount of data available. Our work is fo-
cused on avoiding strict impositions of any particular external factor,
such as the assumption of learning or fitting a specific model, in order
to differentiate neural information. Moreover, we decided to apply
NetSAP on raw voltage recordings as we believe these to be the most
direct and in some ways challenging form of data. Nonetheless, NetSAP
is similarly applicable to other experimental data such as from func-
tional magnetic resonance imaging (fMRI) (Huettel et al., 2004) or
calcium imaging (Denk et al., 1990; Wang et al., 2003; Stosiek et al.,
2003; Helmchen and Denk, 2005) as the underlying data mining pi-
peline is general.

The NetSAP approach proposed in this manuscript is an un-
supervised method intended to capture the differences between neural
messages without delving into efforts to directly translate the neural
code. In other words, we try to identify neural states automatically, that
is, without consulting associated behavioural tasks and outcomes. We
rely on the assumption that neural packages of information are ex-
changed under the form of dynamic functional connectivity (Preti et al.,
2017) which is a common assumption in state-driven analyses of fMRI
(Allen et al., 2014; Yaesoubi et al., 2015a,b) and electro-
encephalography (EEG) data (Hirayama et al., 2015; Allen et al., 2018).
This approach has been able to differentiate clinically relevant mental
disorders (Buckley et al., 2015; Kirino et al., 2017), even with spatial
and temporal limitations (Hutchison et al., 2013; Hindriks et al., 2016).
As mentioned above, we use a density-based cluster estimator called
SAPPHIRE (Blöchliger et al., 2013; Blöchliger et al., 2014; Blöchliger
et al., 2015; Vitalis and Caflisch, 2012), which shares some character-
istics with DBSCAN (Ester et al., 1996) and HDBSCAN (Campello et al.,
2013, 2015; McInnes et al., 2017). During the writing of our paper, a
work was published that uses HDBSCAN to find neural states from di-
gital spike representations (Grossberger et al., 2018).

To test our analysis method we use a controlled computer simula-
tion. For the data generation, we adopt a network model of GABAergic
inhibitory interneurons (i.e., expressing γ-aminobutyric acid neuro-
transmitter), which are considered reliable network regulators (Tóth
et al., 1997; Gulyás et al., 1990; Freund and Antal, 1988; Pelkey et al.,
2017). Each neuron in the simulated network receives as input an ex-
ternal current that mimics excitation of pyramidal neurons. The simu-
lated system has been tailored to emulate experimental voltage re-
cordings from the hippocampus with important physiological features
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like afterhyperpolarization (Wang and Buzsáki, 1996; McKay et al.,
2013), excitatory/inhibitory balance (Xue et al., 2014), and theta/
gamma rhythms (Buzsáki, 2002; Belluscio et al., 2012; Fries, 2015;
Headley and Paré, 2017).

2. Materials and methods

This section consists of two parts. First, we generate realistic voltage
recordings using a simulated neural network. Second, we take the
voltage recordings and, without preprocessing, analyze them in an
unsupervised manner. The main goal is the automatic identification of
states without knowing the external context and by using only raw
voltages. A general pipeline is depicted in Fig. 1 and described in the
following.

2.1. Simulation

The graph structure in Fig. 1 shows an example of the simulated
neural network. We focused on inhibitory Wang-Buzsáki neurons
(Wang and Buzsáki, 1996) because they have been shown to be fun-
damental for population coding (Stefanelli et al., 2016; Buzsáki, 2001)

and have a clear voltage trace with typical afterhyperpolarization
(Wang and Buzsáki, 1996; McKay et al., 2013) (Fig. 2a). Moreover, it
has been shown that these neurons, which represent 10–15% of the
neuronal population in the hippocampus, are a major determinant of
the regulation of information flow by controlling the spiking in a time-
windowed manner (Tóth et al., 1997; Gulyás et al., 1990; Freund and
Antal, 1988; Pelkey et al., 2017). These neurons have been reported to
drive the timing of systemic excitability by means of broad innervation
(Pelkey et al., 2017). In the hippocampus they are, therefore, con-
sidered fundamental regulators of the oscillatory activity across dif-
ferent frequencies (Buzsáki, 2002). Significantly, networks of inter-
neurons have been suggested as one of the major players in frequent
neurological disorders such as schizophrenia (Marín, 2012; Lisman
et al., 2008; Lewis et al., 2005) and epilepsy (Trevelyan et al., 2007;
Marx et al., 2013). In both cases, a modification at the circuitry level
and persistent defects in theta/gamma waves were found to be funda-
mental anomalies (Lisman et al., 2008; Trevelyan et al., 2007; Marx
et al., 2013).

Here, we considered a system focusing on the subset of interneurons
(Pelkey et al., 2017) that are disinhibitors (Freund and Buzsáki, 1996;
Blasco-Ibáñez and Freund, 1995; Bezaire and Soltesz, 2013; Freund and

Fig. 1. Descriptive pipeline of the neural network simulation and analysis. Simulation. Randomly initialized oscillatory input currents are injected into each neuron
of the network mimicking an excitatory field of pyramidal neurons (left). The neural network consists of ISIs partially connected to each other. Using a wiring
probability p=0.004, we generate around 20% inhibitory directed connections (green) resulting in randomly connected components (dark green, middle).
Simulated voltage levels are recorded every millisecond, and experimental noise is added. Analysis. For each pair of neurons, a window of data is taken (light green
boxes) around each snapshot (blue, vertical lines), and a measure of correlation or similarity, sim(xi, xj), is computed. Thus, every snapshot gives rise to a complete
graph (the inferred network), and a separate measure of similarity between snapshots sampled at different times is used to reveal the states or clusters that are hidden
in the high-dimensional data set (SAPPHIRE plot (Blöchliger et al., 2013; Blöchliger et al., 2014), right). During this process, we reduce the amount of weakly
informative variables using a dimensionality reduction procedure, i.e., we usually keep the first 15 principal components (PCs).
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Gulyás, 1997), i.e., they wire and inhibit other GABAergic interneurons
(Chamberland and Topolnik, 2012; Tyan et al., 2014; Gulyás et al.,
1996). These neurons are called interneuron-selective interneurons
(ISIs), and they represent around 20% of all CA1 neurons (Bezaire and
Soltesz, 2013). Even though they are usually divided into three sub-
categories, we decided to focus on the specific type I subgroup of ISIs,
which are known to form bundles of 10–15 neurons and target other
interneurons across a wide span of areas. We considered a network of
50 neurons, containing a minimum of 10 and a maximum of 15 ISIs
(Pelkey et al., 2017; Acsády et al., 1996a; Acsády et al., 1996b). In
Fig. 1 we show an example of a random graph with 14 directed edges.
The expected number of directed edges can be calculated, in the case of
a random graph, using p n(n− 1), in which p is the pairwise wiring
probability and n is the number of nodes. In practice, the network was
wired with uniform probability of p=0.004 in order to maintain the
number of outbound connections around 20% of the number of neurons
while specific network topologies were ignored. We followed this ap-
proach to avoid the addition of supervised bias in the network struc-
ture, which would have required a specific definition of neural plasti-
city or behavioural coding.

We modeled each interneuron i with the following single-compart-
ment current balance equation,

= − − − − +C I I I I IdV
dti
i

i K i i i iNa, , leak, syn, ext, (1)

= + +I I I Ii c i w i n iext, , , , (2)

where Ci is the membrane capacitance while Ileak,i and Iext,i are the leaky
and applied electric currents (external to the network), respectively.
Furthermore, INa,i and IK,i follow the Hodgkin-Huxley formulation of the
ion channels (Hodgkin and Huxley, 1952). In this implementation, ki-
netics and maximal conductances are modified according to Wang and
Buzsáki (1996) to fit hippocampal fast-spiking neurons. These cells
show brief voltage afterhyperpolarization of about 15mV after each
spike (McCormick et al., 1985) (Fig. 2a and b) and can occasionally
reach high frequencies (200–400 Hz (McCormick et al., 1985)) al-
though they usually operate in the 20–100 Hz range (gamma oscilla-
tions). In our model, variations in cell features were approximated by a
small variability in the Ci (extracted from a normal distribution with
mean =μ 1Ci μF/cm2 and standard deviation =σ 0.1Ci μF/cm2).

The synaptic current Isyn (Eq. (3)) depends on the unitless gating
variable si, which roughly describes the fraction of open ion channels.
This variable is the only inhibitory connection between interneurons.
The variable si is bound between 0 and 1, and its dynamics are de-
scribed by a single differential equation (Eq. (4)).= −I g s V V( )i i isyn, syn syn (3)

= −+ −−α s
e

βsds
dt

(1 )
1

i i
V i/2pre (4)

The conductance gsyn=0.1mS/cm2, channel opening rate α=12

Fig. 2. Characteristics of the simulated data set. (a) Voltage values for one single neuron during 200ms of simulation (black). The simulated experimental error is
added as pink and white noise (blue). (b) Univariate distribution of voltage levels from one interneuron during a 20-s simulation. (c) Scatter plot of spikes showing
bursts of activity mimicking the theta oscillations in the input. (d) The total input current for all the 50 neurons during one second of simulation. (e) One neuronal
input during one second of simulation is decomposed into its three main components: constant (Ic,i, green), oscillatory (Iw i, , red), and random (In,i, blue) currents. (f)
Excitatory/inhibitory balance. The orange line represents the average excitatory contribution of the network in terms of current (∑ = I n/i

n
i1 ext, , with n=50). The mean

inhibitory current is shown in gray (∑ = I n/i
n

i1 syn, ) and their difference in black. (g) Firing rates (FR) of the neural population with bin sizes of 1 and 15ms (gray and
black, respectively). Frequencies on the y-axis are indicative only for the gray curve. The gamma oscillations (in gray, 40–100 Hz) are nested in theta rhythms (in
black, roughly six oscillation in one second shown).
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ms−1, channel closing rate β=0.1ms−1, and Vsyn=−75mV are kept
constant (Wang and Buzsáki, 1996). Vi is the membrane potential of the
post-synaptic neuron while Vpre is the pre-synaptic voltage.

The system of differential equations (1–4) was simulated using
Brian2 (Goodman and Brette, 2008; Goodman et al., 2014). The input
to the network is modeled as external currents (Iext) that resemble the
receptive field of each interneuron from different populations of ex-
citatory pyramidal cells. This external contribution has an important
role in the formation of theta oscillations in the hippocampus and is
considered the major input to interneurons (Buzsáki et al., 1983). We
modeled the oscillations using oscillatory currents with a frequency of
6.4 Hz. Importantly, the model naturally gives rise to gamma oscilla-
tions (25-100 Hz) nested in theta oscillations (Fig. 2g) in accordance
with in vivo observations (Buzsáki, 2002; Belluscio et al., 2012; Fries,
2015; Headley and Paré, 2017).

The applied current Iext,i (Eq. (2), Fig. 2e) consists of three main
components: first, a constant baseline Ic,i of 0.6 μA (green line); second,
an input process with a periodic sinusoidal signal Iw i, (semi-amplitude
of 0.6 μA, red line); last, an Ornstein-Uhlenbeck process (represented by
the In,i contribution) that adds noise to the differential equations (blue
line). A fundamental aspect of the simulations is the balance between
inhibitory and excitatory currents (Xue et al., 2014). This property is
supported by experimental evidence (Atallah and Scanziani, 2009) and
is believed to be crucial for the homeostatic coupling needed for effi-
cient coding and computation (Lim and Goldman, 2014, 2013). In
particular, we highlight here the concept that the excitatory/inhibitory
balance can be positive or negative in order to effectively convey and
transform information in time in a manner that goes beyond the tight
homeostatic excitatory/inhibitory balance (Denève and Machens,
2016). In other words, packages of information may be propagated in
the neural network using specific alterations in the excitatory/in-
hibitory balance (Lim and Goldman, 2014, 2013). In Fig. 2f, we show
the momentary shifts in the equilibrium (black line) as the difference
between the mean of all excitatory currents (orange) vs. that of all in-
hibitory currents (gray).

All the simulated parameters have been set following experimental
findings (Pelkey et al., 2017; Wang and Buzsáki, 1996) or an ‘edge-of-
chaos’ approach (van Vreeswijk and Sompolinsky, 1996). For the latter,
we intended to avoid possible divergences in the information content of
the neural signal. In other words, we allow neurons to spike irregularly
while we still keep trace of the underlying signal which must be re-
current. We use coherence to measure voltage variability and derive
adequate parameters for the simulation:

=′ ′ ′C S
S Sx x

xx
xx
2

(5)

where the cross spectral density estimate ′Sxx is divided by the single
spectral densities of x and x′, Sx and ′Sx , respectively. The spectral
densities are calculated using Welch's method (Welch, 1967) with
segments of 200 snapshots and 90% of overlap. In detail, we divided
every simulation into two equal parts and computed the coherence for
each neuron, i.e., x is the same neuron as x′, but in the first and second
halves of the data set, respectively. In this way, we can evaluate for
individual frequencies how the signal of each neuron changes during
the simulation. In the case of zero coherence, we expect that the first
part of the simulation is completely different from the second part. For
the analysis of the simulation parameters we always used simulations of
20 s (20,000 snapshots).

Finally, experimental error is simulated using white and pink noise
that is added to each point of the voltage traces. The error terms were
generated using the same dispersion (standard deviation) as employed
in the simulated data set (around 25mV). In Fig. 2a, this process is
shown for one neuron.

2.2. NetSAP analysis

To analyze neural time series, we have extended here the SAPPHIRE
algorithm developed originally for the analysis of molecular dynamics
simulations (Blöchliger et al., 2013; Blöchliger et al., 2014; Blöchliger
et al., 2015; Vitalis and Caflisch, 2012). This method is useful to sort
and classify instantaneous snapshots from dynamical processes that
change continuously in time. In practice, the method's only essential
hyperparameter is a distance metric between snapshots. Briefly, the
algorithm starts from an arbitrary time point, subsequently adds the
snapshot that is geometrically nearest to any of the snapshots already
added and thus constructs a reordered time line (called progress index)
without repetition. Those points in the input data that are visited ex-
tensively and come from a structurally homogeneous region will be
grouped closely. A kinetic annotation (Krivov and Karplus, 2006)
highlights specific states or basins based on their temporal persistence,
at least when visited recurrently. In general, the density of snapshots,
which is metric-dependent, should be high in the basins (states or at-
tractors) and low in the connecting areas (‘barriers’ or transition states).
This similarity clustering is highly efficient at revealing the stochastic
dynamics of very complex systems, e.g., when there are many small
attractors found across very long recording times. Notably, the algo-
rithm is already scalable (i.e., applicable to very large data sets) and has
been used to analyze millions of time points and hundreds of variables
(Bacci et al., 2015).

We used mainly the minimum spanning tree (MST) construction to
create the SAPPHIRE plot because it has no auxiliary parameters. When
computing times were unfeasible, we used an approximation, the short
spanning tree (Blöchliger et al., 2013; Vitalis and Caflisch, 2012), which
smoothly converges to the MST with straightforward parameter
choices. In particular, the number of search attempts defines how many
snapshots are compared to connect the spanning tree (Fig. S1c). A
larger number of attempts gives a better approximation of the MST but
the dependency of the metric of interest (NMI, see below) is very weak
here.

We adopted the SAPPHIRE algorithm because it can elucidate subtle
temporal features and resolve rare events as it preserves kinetic in-
formation (Blöchliger et al., 2013; Blöchliger et al., 2014; Blöchliger
et al., 2015; Vitalis and Caflisch, 2012). In particular, the SAPPHIRE
analysis identifies states that contribute to the preservation of in-
formation for short periods of times, which we hypothesize to constitute
the physical basis for neural encoding. We assume that neural networks
exchange information in finite packages that persist during prolonged
and repeated input presentations. Therefore, the approach is based on
analyzing the data with the goal of highlighting the functional state of
the network, i.e., the precise condition of the information exchange at a
certain time point. How can this functional state be represented for an
instantaneous time point? Here, we use a sliding window procedure as
follows. For every snapshot, data from the time window centered on
this point are used to calculate a correlation measure for every pair of
neuron traces and we chose the inverse of the Minkowski distance for
this. These data constitute a complete correlation (or similarity) matrix
between neurons for each individual snapshot. The time series of these
matrices provides a dynamical picture of the functioning of the net-
work. Fed into the SAPPHIRE analysis, we employ the Euclidean dis-
tance between matrices as the (dis)similarity measure. However, to
counterbalance the presence of weakly informative variables, a di-
mensionality reduction procedure is applied to the elements of these
matrices, and only the first 15 principal components are retained. The
work-flow is depicted in Fig. 1.

We termed the overall procedure NetSAP (Network States And
Pathways). The method belongs to the group of time-based clustering
descriptors (Liao, 2005). Our aim is to infer the landscape of accessible
states from observations made at discrete and generally regular time
points. Broadly speaking, NetSAP serves as an unsupervised clustering
algorithm that relies on transient network states to identify the system's
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local minima (basins or cluster centers) and their connections. Notably,
NetSAP does not require a prior definition of the number of clusters or
their sizes and the window length is its main impactful parameter.

To quantify the performance of NetSAP, we compare the original
input annotation (true labels) and the states identified by SAPPHIRE
analysis (predicted labels) using a compact descriptor of the clustering
performance. As shown in Results, here the true labels derive from
controlled variations in the input presentation to the network. In par-
ticular, we adopt the normalized mutual information score (NMI (Strehl
and Ghosh, 2002)) to evaluate the identified states:

=
H H

tc pc tc pc
tc pc

NMI( , ) MI( , )
( ) ( )s s (6)

where tc and pc denote true and predicted labels, respectively, while
Hs(.) is the Shannon entropy and MI(tc, pc) is the mutual information
between two different partitions. In case the exploratory analysis of the
SAPPHIRE plot highlights fewer or more states than the true annota-
tion, we do not impose any merging or splitting. A fundamental prop-
erty of clustering comparison metrics is the so-called constant baseline
property (Vinh et al., 2010). If this property is not fullfilled, then the
comparison metric will be positive, even in case of labels that were
generated randomly. In practice, this happens when the number of data
points is scarce and the number of clusters is high. Vinh et al. suggested
that NMI complies with this property if N/ncluster > 100, where N is the
number of points and ncluster is the number of clusters (Vinh et al.,
2010). Our simulated data is above this soft limit. Nevertheless, we
adopted the adjusted Rand index (ARI) (Hubert and Arabie, 1985) in
the case of more than four clusters (Figs. 9c–f, 10, 11).

The SAPPHIRE analysis is used to identify the most relevant barriers
between states or, in other words, the best separations between basins.
The identification can be done by manually selecting the barriers on the
cut profile of the SAPPHIRE plot or by using an automatic procedure.
For this latter purpose, we focus on evaluating the overlap between
points on the temporal annotation of the progress index (gray dots in
Fig. 3a and b). To do so we uniformly divide the x-axis in partitions and
repeat this process with different numbers of divisions, so as to have a
variable number of separators in different positions of the progress
index (Fig. 3a). As a standard, we divide the progress index in uniform
partitions 50 times by using a variable number of separators, usually
between 10 and 200. In Fig. 3a, we highlight nine uniform separators of
the progress index distribution with vertical red lines. The resulting 10
divisions include groups of points that are successively divided into
horizontal histograms, i.e., we took the y-axis (experimental time) as
the traditional binning axis (Fig. 3b, 20 bins). By measuring how well
two consecutive groups of points overlap, we obtain an estimate that
should be proportional to the likelihoods that they come from a
homogeneous basin. We take the maximal information coefficient as
the measure of overlap (Reshef et al., 2011).

In practice, we estimate distributions of points with horizontal
histograms and we calculate the inverted maximal information coeffi-
cient (IMIC) between consecutive pairs of vectorized histogram counts.
The metric shows low values where the points are similarly distributed,
while it presents peaks where there is vertical separation, i.e., there is a
jump between distributions of points. The IMIC between two count
vectors a and b can be written as

= − <a b A B
A B

IMIC( , ) 1 max MI*( , )
log(min( , ))nAB α

(7)

The values of the horizontal histograms a and b are used as nu-
merical vectors and the scatter plot between these values is used by MIC
to infer their relationship. In particular, MIC assumes the following: if
there is a functional relationship between two variables, it must be
possible to define a specific 2D histogram on the scatter plot which
maximizes their mutual information. In Eq. (7), (A, B) are bins of
vectors a and b, respectively. To limit the search space of possible bins,

we used nα where n is the number of elements in a and b, and α is a
constant (fixed at 0.4). MI*(A, B) is the maximum mutual information
over all possible bins (A, B). These calculations are made using the R
package minerva (Albanese et al., 2013).

Next, we linearly interpolate the scores found for each group of
barriers, and we average them, thus obtaining the black curves in
Fig. 3a and b (and the red curves in Fig. S3a–e). We use a peak finding
algorithm with a span of 2500 to identify all relevant barriers and sort
these maxima by their associated IMIC values. Considered in succession,
they give rise to the corresponding profile in Fig. 3c (red, segmented
line). Because the IMIC is monotonously decreasing with growing
number of states, the selection of the number of barriers to use can be
ambiguous (e.g., Fig. S3e). For this reason, the PBM index (Pakhira
et al., 2004) was consulted (Fig. 3c) as it is robust with respect to

Fig. 3. Procedure for the identification of the barriers. (a) The temporal trace of
an 80-s simulation of 50 neurons, reordered according to the progress index, is
shown in the background (gray dots, right y-axis). We divide the progress index
distribution into uniform splits with different number of divisions (red points:
darker to lighter colors represent 10, 25, 50, and 100 uniform divisions). Only
the splits for 10 groups are shown (vertical dashed lines). For each consecutive
region, two histograms in experimental time are defined, and the IMIC between
them is calculated. These values are shown as the y-axis position of the red
points. Colored areas correspond to histograms highlighted in panel (b). Each
group of points (one for each number of divisions) is connected using segments.
The resulting lines are subsequently averaged in order to create the final IMIC
curve (black). The final selection of three barriers is indicated (blue vertical
lines). (b) Details for the histogram construction from panel (a). Using 20 bins,
we show a histogram in experimental time within every uniform progress index
division. These histograms are plotted as bar plots to the side of the corre-
sponding divisor. We use these counts to calculate pairwise IMIC values. (c)
Dependence of different scores on the number of states. Using IMIC (red) and
PBM index (Pakhira et al., 2004) (black), a consensus choice of four states
emerges. The NMI score (blue) is an a posteriori validation using the true labels,
i.e., the ground truth.
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different data sets and partitions (Vendramin et al., 2019). The final
selection of barriers is shown by vertical blue lines in Fig. 3a (and by
dotted vertical lines in Fig. S3a–e). Generally, the resulting choice of
barriers is in good accordance with a simple visual inspection.

We require one parameter for the automatic identification of peaks,
which is the aforementioned minimum number of points (span) be-
tween them (for example, in Fig. 3 the minimum number is 2500
snapshots). This is a soft requirement as it is mainly necessary to avoid
the selection of multiple barriers from the same peak. Since the span
requirement limits the number of peaks that can be found, we use the
average peak height as a cutoff for inferring the number of states. The
IMIC curve is not particularly sensitive to the other parameters, i.e., the
number of bins for the histogram construction and the number of uni-
form splits, and we keep them fixed here. As mentioned above, we used
from 10 to 200 splits 50 times, and 50 bins (only 20 bins are shown in
Fig. 3b to avoid overcrowding).

To be certain of the NMI robustness against random inputs, we se-
lected the simulation with low noise (Fig. S3a) and shuffled its progress
index. The resulting NMI is close to zero (Fig. S4a). As a second test, we
also shuffled the true label vector, i.e., the annotation, and obtained
similarly low scores (Fig. S4b). Finally, we wondered how the choice of
barriers could affect the results. To investigate this possibility, we took
different simulations and picked the barriers 500 times at random. Each
random pick was constrained to be distant from every other pick by at

least 2500 snapshots (the same limit used for the automatic barrier
identification). Afterwards, the resulting distribution of NMI values was
compared with the score calculated using the automatic procedure (Z-
score, Fig. S3f–j, obtaining p-values lower than 5%, see Fig. S3f–i).
These statistical tests indicate that the automatic procedure for the
choice of barriers is robust and performs substantially better than a
random choice.

3. Results

3.1. Analysis of simulation parameters by coherence of voltage patterns

The coherence is influenced strongly by the noise current In
(Fig. 4a). It deteriorates to values close to 0.01 for a maximal semi-
amplitude of In=0.4 μA at frequencies higher than 30 Hz. An oscilla-
tory component larger than 0.5 μA is required for a high coherence
(Fig. 4b). In particular, the oscillatory current Iw i, regulates directly the
theta frequency of the wave (around 6 Hz, Fig. 2g), while the gamma
ripples are defined by the finer details of the neural network, e.g., the
inhibitory connections. The other components of Iext,i decrease signal
coherence (Fig. 4c and d). In the particular cases in which >I I2c w, we
see a drop in the coherence of the theta waves (6 Hz, green in
Fig. 4b–e). Nonetheless, the low frequency regime is generally more
robust toward parameter variation than the higher frequency regime

Fig. 4. Coherence-based analysis of the simulation parameters. (a) Two simulations that differ primarily in noise currents (0.01 μA in blue and 0.4 μA in green) are
used to highlight limiting values of coherence. Unless stated otherwise, the simulation with low noise current (blue), which has mean coherence around 0.7, is used
for the subsequent analysis. The lighter lines represent each single neuron used in the simulation while the darker lines are their respective means. Vertical black lines
indicate the frequency values (6, 25, 36, 45, 90 Hz from left to right) for which results are shown in panels b–f. (b–f) Individual curves reflect different frequencies
(green, red, black, blue, and light blue for 6, 25, 36, 45, 90 Hz, respectively). For each panel, we ran 40 simulations of 20 seconds in which all but one parameter was
kept constant. The default choices were as follows: (viz., semi-amplitude of oscillatory current =I 0.6w μA, Ic=0.6 μA, maximal semi-amplitude of noise current
In=0.02 μA, p=0.004, =σ 0.1Ci μF/cm2). The parameter varied is the one on the x-axis. The population firing rate (PR) is highlighted (orange line, right y-axis).
Defaults are highlighted with vertical black lines. (b) Coherence increases as a function of the oscillatory current semi-amplitude (Iw). Notably, when the constant
current is higher than the oscillatory current amplitude (e.g., when =I 0.3w μA), the coherence of the slow frequency (6 Hz, green) recovers. For further analysis we
used a fixed current semi-amplitude of 0.6 μA (vertical dashed line). (c) The injected current (Ic) reduces the coherence of the signal if too high, which is in
accordance with previous findings (Wang and Buzsáki, 1996). Moreover, it is consistent with panel (b), as the coherence for 6 Hz remains constant and higher than
the coherence of all the other frequencies in the case of >I I2c w. The value of the fixed current we adopted is 0.6 μA. (d) As expected, the network coherence in the
high frequency regime is highly dependent on the noise inserted in the differential equations. For the maximal semi-amplitude of the noisy current (In), we chose
0.02 μA. (e) Coherence decreases as a function of the pairwise connection probability. The number of outbound connections grows rapidly with p and at 0.02 the
network is already fully connected (blue vertical line). A high number of inhibitory connections increases the probability for silent neurons, which spike rarely and
thus show low coherence. In order to maintain the number of self-inhibitory interneurons (ISIs) around the physiological value of 20%, we defined the connection
probability as 0.004 (black vertical line). (f) Coherence levels for different standard deviations of the membrane capacitance (σCi).
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(Fig. 4b–d). Finally, the coherence of the neural simulation is not in-
fluenced by the standard deviation of the membrane capacitance irre-
spective of the frequency (Fig. 4f).

The connectivity or self-connectivity is critical and must be around
the physiological value of 20% (Freund and Buzsáki, 1996; Blasco-
Ibáñez and Freund, 1995; Bezaire and Soltesz, 2013; Freund and
Gulyás, 1997), which corresponds to a connection probability
p=0.004. Higher values of connectivity lead to the formation of silent
interneurons, i.e., neurons that spike rarely due to the high number of
inhibitory inputs. Vice versa, lower values allow the majority of inter-
neurons to spike continuously with high frequencies. In this way, the
overall higher excitation can potentially disrupt the theta oscillations.
With a 20% flat connectivity, the neurons have an overall spike fre-
quency of 30 Hz with peaks of 80–100 Hz in the gamma ripples
(Fig. 2g).

3.2. Identification of neural states by NetSAP analysis

Using the settings described in the coherence analysis, a first
benchmark simulation of a 50-neuron network was performed, and
voltage values were recorded for all neurons every millisecond during
80 s. Four distinct states were defined by input currents that differed
slightly in timing and intensity for each neuron of the neural network.
In detail, the phase and amplitude of the oscillatory input currents were
taken randomly from a normal distribution having standard deviations
of 0.1 radians and 0.01 μA, respectively. We subsequently simulated the
four states along windows of variable lengths (between 1 s and 10 s)
and connected the resulting data sets in a single time series. No other
parameter was changed during the simulation, and the network

connections were kept identical, similar to the one shown in Fig. 1. We
did not take into consideration a possible bias when the simulation is
reinitialized because, in a simulation with low noise terms, 300ms are
the maximum time needed to stabilize the spiking patterns. The simu-
lated input sequence is shown in Fig. 5a as a continuous line between
the four different states. By simply parsing visually the voltage levels, it
is difficult to determine the point in which the state changes (Fig. 5b).

We applied NetSAP to the four-state simulation (In=0.01 μA, mean
coherence of 0.7) using 80 snapshots (80ms) as window size for the
network inference (see 2.2). This size was chosen because it is the
minimum that allows the selection of a region in time that has always at
least one spike. The results are robust with respect to the window size in
the range from 60ms to 120ms (Fig. S1d). Figs. S1b and Fig. S2d show
that different network inference methods affect the resulting score and
computational time needed considerably. For pairwise comparisons of
neural signals we decided to use the Minkowski similarity because it
shows higher NMI scores than other metrics across the tested simula-
tions (Fig. S1b). The Minkowski similarity is the inverse of the distance= ∑ −=d X Y x y( , ) ( | | )p i

w
i i

p p
1

1/ , in which xi and yi are vectors of neural
voltages, p=3, and w is the size of the sliding window.

NetSAP is able to resolve multiple neuronal states, here, the four
different patterns (Fig. 6a). If we compare the temporal order of the
original states (T, Fig. 6b) and the states predicted by NetSAP (P-N,

Fig. 5. Simulation of a 50-neuron network according to Eqs. (1–4). (a) Input
presentation sequence. Each state represents one of four inputs along the si-
mulation of 80 s. The thin vertical lines indicate the moment in which the input
currents (Iext) change state. The dashed blue line highlights the transition point
shown in panel b. (b) Voltage levels of 50 neurons in a time interval around a
change of state (blue dashed line).

Fig. 6. Unsupervised identification of states by NetSAP analysis. (a) Using the
network inference, the four different states are successfully identified by the
SAPPHIRE plot with almost optimal NMI of 0.92. The progress index is anno-
tated with kinetic information reliant on a cut-based partitioning criterion
(light blue curve) and the original cluster membership (top, in spectral colors).
The distances between consecutive snapshots in the progress index sequence
(top, black) indicate higher values before each barrier as expected. The tem-
poral annotation (black dots) shows the real time (vertical axis) of every
snapshot as a function of position in the progress index. Notably, the temporal
trace highlights that the state recognition is correct also for short input pre-
sentations, such as the one found within simulation times of 60–70 s, which
corresponds to only 1s, i.e., 1000 consecutive snapshots (highlighted in green).
(b) Temporal order of true states (T) and the states predicted using NetSAP (P-
N) and k-means++ (Arthur and Vassilvitskii, 2007) (P-K). The latter method,
using k=4, is only able to recognize the blue state partially (NMI of 0.15).
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Fig. 6b), we can see a clear correspondence (NMI of 0.92). Conversely, a
clustering procedure on the inferred functional networks managed to
achieve only a partial recognition of states. Using k-means++ (Arthur
and Vassilvitskii, 2007) we obtained an NMI of only 0.15 (P-K, Fig. 6b).
As additional comparisons, we performed a principal component ana-
lysis (PCA) of the whole data set and constructed a SAPPHIRE plot
without network inference (Fig. 7a and b, respectively). Both of these
controls fail to separate the four states.

Importantly, the NetSAP algorithm is able to resolve very short
excursions into different states as highlighted by the green rectangle in
Fig. 6a. The overall analysis procedure required 15min (Fig. S2) on a
commodity computer running Linux (Core i7-4790 CPU with 3.60 GHz
x8 and 16 GB RAM). Indeed, the approximate algorithm (the so-called
short spanning tree procedure) can be highly efficient and scales
comfortably to millions of data points. For the data set considered here,
5000 search attempts for the construction of the short spanning tree are
enough to obtain satisfactory performance (Fig. S1c).

3.3. Robustness of NetSAP

First we investigated the robustness of NetSAP for increasing noise
current. We generated 20 different simulations with identical settings
but using different amplitudes for the noisy input current. For fre-
quencies higher than 6 Hz, the coherence deteriorates significantly al-
ready at a noise current of 0.1 μA (Fig. 8a). Using NetSAP and auto-
matically selecting the barriers as described previously, we were able to
find the four relevant states and to calculate an NMI score for each
simulation (Fig. 8b). For further analyses, we selected five indicative
simulations with the following noise levels: 0.01, 0.04, 0.12, 0.22, and
0.30 μA (gray shaded circles). Using these data sets, we estimated the

variability of NetSAP by running the analysis 35 times for each noise
level changing only the random seed for the short spanning tree con-
struction (5000 search attempts) and the automatic selection of bar-
riers. The NMI score shows that the NetSAP analysis correctly identifies
basins up to a noise level of 0.2 μA (Fig. S1a) while the standard de-
viation of the NMI score does not depend on the noise level. Moreover,
the principal sources of variability, i.e., the number of search attempts
and the automatic barrier selection, can be potentially limited by
manual optimization. For example, one can improve the identification
of the barriers by enhancing the number of bins on the y-axis or by
using more splits of the progress index distributions.

All the predicted states have been calculated using the SAPPHIRE
plots, and in particular using only the temporal annotations (distribu-
tion of points on the progress index). For this reason, we tested the
procedure of automatic barrier selection with randomized null models
(Fig. S4). In addition, we compared the NMI score generated by the
automatic selection of the barriers and the distribution of NMI scores
produced by random picks of divisors. The distance of the optimal score
from the distribution has been estimated using Z-scores and p-values
(Fig. S3f–j). As expected, the automatic procedure produces sig-
nificantly better results than the random selection, e.g., Fig. S3a-d.
Instead, when the NMI score drops below a threshold of around 0.25,
the selected barriers produce similar scores in comparison to a random

Fig. 7. PCA and SAPPHIRE without network inference fail to identify the four
neural states. (a) Kernel density estimation of the first two components of the
principal component (PC) analysis performed on raw voltage levels. (b)
Without network inference and using only Euclidean distances between snap-
shots, the SAPPHIRE plot does not separate the states. This is expected as a
purely time point-wise approach should not be able to partition an oscillatory
signal encoded as dynamical correlation in time.

Fig. 8. Robustness of NetSAP evaluated by 20 simulations of a 50-neuron
network with a variable noisy input current. (a) Coherence as a function of
input noise at selected frequencies (average and standard deviation). The
overall coherence is also shown (black line). (b) NMI scores as a function of
coherence. Gray circles indicate the simulations used for further testing (Figs.
S1 and S2), and their noise levels are indicated. The red line is a polynomial fit
of degree 4 and drawn purely as a guide to the eye.
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pick (Fig. S3e).
We also wanted to test if the automatic barrier selection and the

resulting NMI score are dependent on the number of clusters in the
analyzed system. To this end, we first artificially increased or reduced
the number of states in the true label vector (annotation). In practice,
we divided one state into two, thereby obtaining five states overall (Fig.

S5c,f). Alternatively, we merged two states to arrive at three final states
(Fig. S5b,e). Moreover, we tried to look for four states after merging
two in the true annotation (Fig. S5a,d). In these cases, the better divi-
sors in terms of NMI are generated from the random picks (red dots in
Fig. S5a–c). This is expected because the temporal distribution is, in all
cases, mismatched with the true label vector. These results provide

Fig. 9. NetSAP analysis of a neural network simulation with 20 different states sampled multiple times along a simulation of 200 seconds. The network consists of 50
neurons modeled by Eqs. (1–4). (a) State recurrence during the time course of the simulation. The average residence time for each input is 2500 snapshots (ms), and
each state is visited 3–6 times. (b) Similarly to Fig. 6, the SAPPHIRE plot shows in gray colors the states from dark to light. Here, the kinetic annotations (blue and red
lines) illustrate likely positions of barriers. Vertical black lines on top describe the inter-snapshot distances as the height of each segment. (c) Distribution of ARI
values from randomly picked barriers (light blue) and the ARI obtained using our optimization procedure (minimum distance between peaks is 7000 snapshots).
Here, the p-value is 3×10−5, indicating a substantially better choice in comparison to random levels. (d–f) The temporal annotation is depicted by gray points in the
background. These dots are plotted as a function of their position in the progress index (x-axis) and the experimental times (y-axis). The dark red line shows the IMIC,
which was interpolated to approximate a continuous line along the progress index. The blue crosses indicate the ‘barrier candidates’ and their respective height on the
IMIC curve. The final selection of divisors (dotted vertical lines) is done by ranking and choosing the highest peaks (black dots at the top). Using the first divisors with
the highest IMIC values, we computed the ARI score (shown as the horizontal blue line) between the inferred and true labels. As negative controls, we picked barriers
randomly from a uniform distribution 500 times, and we use the same annotation to calculate the ARI (green dots, position of the barriers on the x-axis and score on
the y-axis). Red dots represent the set of those random divisors with the maximum ARI score. Random shuffling of the progress index (e) or the annotation (f) results
in ARI scores close to zero. (g) The temporal sequences of the true states and the states predicted using NetSAP are shown for the five states 1–5 in (a). For visual
clarity, we colored in white the remaining 15 states.
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evidence that the automatic identification makes specific use of the
information about the kinetic partitioning of the states, which is de-
sired. The best results using random splits are superior because, in es-
sence, they are optimized using the real annotation, i.e., by calculating
the final NMI score. The simple nature of the modification of the label
vector means that maximum values based on random splits can stay
close to the scores obtained with the original assignment of four states
(NMI score of 0.84, Figs. S3a and S5a–c).

The NetSAP analysis of the 4-state system with an average co-
herence of 0.7 showed high sensitivity, even to short 1-s input pre-
sentations (Fig. 6a). As a more realistic test, we thus wanted to explore
the limits of NetSAP performance for a voltage recording with lower
coherence and more states. Therefore, we carried out a 200-s simulation
of a 50-neuron network with 20 states, a noise current of In=0.02 μA
(mean coherence of 0.5), and an average residence time between
2000ms and 3000ms (Fig. 9). This test is particularly challenging as we
did not impose any threshold on the minimum difference between in-
puts, and the neural states can thus overlap. The identification of states
(as measured by an ARI of 0.54) is above chance levels (Fig. 9c–f). We
wanted also to analyze if a higher number of neurons is beneficial for
the correct identification of states. To do so, we performed 400 simu-
lations of 100 s with a number of states ranging from 2 to 40, and

number of neurons ranging from 10 to 105. The parameters were kept
identical to those in Fig. 5, with the exception of In=0.02 μA instead of
In=0.01 μA, and the average residence time which was randomly
picked from a flat distribution between 1000 ms and 3000ms. The
resulting ARI scores are shown in Fig. 10a. As expected, a higher
number of neurons permits a better identification of states. Conversely,
NetSAP is not reliable when the number of states is larger than about
30. This failure is possibly due to overall simulation length, which does
not allow for a sufficient level of recurrence when there are many
states.

Next, we considered the case of multiple voltage patterns trans-
mitted through different subpopulations of the network at the same
time. For this purpose, we simulated a neural network consisting of two
groups of neurons where each group represents a different voltage
pattern. In practice, we made 10 simulations of 90 s each in which a
subpopulation is involved in a 6-state system while the other is related
to a different group of states (3-state system). To show that raw voltages
are essential while firing rates would not be an effective pre-processing
method, we simulated a network in which the two populations convey
the voltage patterns synchronously, meaning that the theta oscillations
are aligned. The other parameters were kept identical to Fig. 10a. We
varied from 10 to 60 the number of neurons involved in the population
representing the 6-state system and simulated a total of 70 neurons. The
remaining neurons encoded the 3-state system. For the SAPPHIRE
analysis we imposed a true annotation with 3 or 6 states. The profile of
the ARI value as a function of the subpopulation size increases for the
networks with increasing amount of neurons that code for the system
with the number of states used in the analysis (red dots in Fig. 10b).
Qualitatively, an ARI score higher than 0.6 is obtained for the networks
in which at least 40 of the 70 neurons are involved in the representation
of the system with the same number of states used for SAPPHIRE
analysis.

Finally, we considered the possibility of having a subpopulation of
completely unrelated neurons that spike at random times (Fig. 11). We
modeled these neurons by removing the external oscillatory current Iw
and increasing their noise current In by a factor of four. The other
parameters were kept identical to the simulations used for Fig. 10a with
70 total neurons and 4 patterns, while we varied the number of un-
related neurons. The firing rates (Fig. 11c) differ from those of the
original system (Fig. 2g) because the spiking times of the decoupled
neurons are randomly distributed. The different voltage traces of the
two populations are depicted in Fig. 11d. We simulated 22 neural
networks with different numbers of unrelated neurons (from 2 to 65),
and we calculated the resulting ARI (Fig. 11e). We found that the ARI
score drops significantly when the number of random spiking neurons
grows above 50% of the total of 70 neurons.

4. Discussion

We propose NetSAP as a data-driven analysis tool to identify neural
states from voltage recordings. NetSAP was successfully applied to
realistic albeit simplified neural simulations. With four different ex-
ternal inputs to the neural network, NetSAP was able to identify their
four major corresponding neural states using only the raw voltage levels
(Fig. 6a and b). Conversely, a standard clustering approach recognized
only partially one of the states (k-means++ (Arthur and Vassilvitskii,
2007), Fig. 6b). A naive principal component analysis failed to isolate
any of the four neural states (Fig. 7a).

In a more challenging test with 20 different patterns in 200 s of
simulation (mean coherence of 0.5) NetSAP successfully mapped more
than 65% of the snapshots to their correct labels, resulting in a total ARI
of 0.54 (Fig. 9). The studied system was particularly challenging due to
the low levels of recurrence and the short life times of states. In addi-
tion, we explored how the identification of states can be affected by the
number of neurons and states involved (Fig. 10a). In the cases in which
the number of states is high, a fixed number of snapshots limits the

Fig. 10. Dependence of NetSAP analysis on the number of neurons and states.
(a) NetSAP is applied on 400 simulations of 100 s that share the same para-
meters (In=0.02 μA and average visiting time between 1000 and 3000ms)
while we varied the number of states (from 2 to 40) and the number of neurons
(from 10 to 105). ARI scores are shown from lower levels (blue) to higher (light
green). (b) Analysis of 11 simulations of 90 s each, each having a total popu-
lation of 70 neurons divided into two subpopulations that represent different
states at the same time. A subset of 10 to 60 neurons can define either a 6-state
or 3-state system. As an example, the first tick on the x-axis (20) corresponds to
the simulation with 20 and 50 neurons receiving as input the 6-state and 3-state
system, respectively.
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persistence time and recurrence of each state. As the SAPPHIRE plot
relies on the observed sampling density to detect states, it is likely that
collecting and analyzing more snapshots would result in better scores.
We also found that a higher number of information-carrying neurons
allows NetSAP to achieve a better identification of states. To further
evaluate the sensitivity of NetSAP on the number of neurons relevant to
the state presentation we analyzed how the score drops if there is a
mismatch between the true annotation and the predicted one (Fig. 10b)
or if a subpopulation of neurons spikes randomly (Fig. 11e). The latter
analysis provides evidence that a correct identification of states is
possible if at least half of the neurons encode the signal of interest.

The main weakness in our simulation is its limited heterogeneity. An
interesting improvement would be to enhance the number of neurons
involved by closing the circuitry with a detailed excitatory population.
Furthermore, it is possible to use a broader range of parameters to
model each type of neuron. The enhancement of cellular heterogeneity
can take advantage of known parameter clusters that are described
experimentally (Tricoire et al., 2011).

Notably, the NetSAP work flow used here requires two essential
hyperparameters: a similarity measure to infer the functional network
and the distance metric between networks. For the latter we used the
Euclidean distance without considering optimization. In NetSAP, we
require another important parameter, viz., the length of the time
window, which was shown to be robust in the range 60–120ms (Fig.
S1d). It is also possible to overcome the limitation of a windowed ap-
proach, i.e., the requirement to expect consistent time scales and arti-
facts due to noise factors, by transforming the data to, e.g., the fre-
quency domain. Among these methods, dynamic connectivity detection
(Xu and Lindquist, 2015) and wavelet transform coherence (Chang and
Glover, 2010), are cited here.

Even if we did not stress the selection of the number of states as a
fundamental parameter, it is relevant for common experimental settings
in which the ground truth (true annotation) is of course unknown. In
these cases, the selected barriers could be inconsistent with available
behavioural annotations. This is clearly possible because multi-neu-
ronal data extracted from real networks tend to carry much more in-
formation than what is contained in a simple annotation. To implement
some supervision in feature space, one could, for example, employ the
NetSAP procedure to select neurons by a simple bootstrapping where
the ARI scores highlight those neurons that are most consistent with a

given annotation. For this task, specific techniques like gradient opti-
mization and simulated annealing are available as well (Satuvuori
et al., 2018). This procedure would go beyond the usual experimental
methods, which aim at average activity as their major selection rule
(Ahrens et al., 2013; Cohen and Kohn, 2011; Harvey et al., 2012;
Freeman et al., 2014; Lopes-dos Santos et al., 2011; Peyrache et al.,
2009). The number of neurons, C, is also of practical importance for
NetSAP. The initial inference of networks leads to N snapshots of di-
mensionality D= C2, and these are fed into the dimensionality reduc-
tion by PCA. In a sparse regime, where N is not significantly larger than
C, this may cause issues. However, as NetSAP relies on differences in
sampling density for identifying states, this regime is poorly suited to
begin with.

For real data sets, it is clearly of supreme interest to match a ground
truth defined by a relevant behavioral annotation with neural states. As
mentioned above, it is a frequent assumption that not all neurons in the
network are relevant, and the identification of behaviorally critical ones
is a common goal. For example, consider an experiment aimed at re-
cognizing hallmarks of a specific neural disorder against a healthy
control group. A direct analysis may rely on overall activity levels for
individual neurons or on the correlation of this activity with the be-
havioral ground truth. Instead, the NetSAP pipeline offers an indirect
route to prune the measured data sets: by bootstrapping in neuron space
and a subsequent, unsupervised inference of neuronal states, it may be
possible to find partitions that have significant NMI values with the
behavioral annotation. This offers a natural route to not only prevent
overfitting but also to independently estimate whether the behavioral
state is clearly encoded in these neurons at all.

The NetSAP analysis pipeline can be improved further. For example,
more sophisticated network inference methods could unveil complex
relationships between neurons (e.g., using transfer entropy (Schreiber,
2000) or directed information (Cai et al., 2017)). As alluded to above,
the metric used for measuring similarity between inferred networks
(snapshots) could be optimized using network-specific metrics like the
Ipsen-Mikhailov one (Ipsen and Mikhailov, 2002).

Fundamental questions do remain, however. For example, is it
possible that the distributed and transient nature of the neural code is
simply too elusive for a detailed recognition of behavioural context?
Even then, we believe that a combination of experiments aimed at
discovering the real synaptic topology (structural connectivity) and a

Fig. 11. NetSAP analysis of simulations of a 70-neuron network in which a variable number of neurons spikes randomly and the remaining neurons receive input
corresponding to four states. (a–c) A segment of 1 s is shown for a network that has half of its neurons spiking randomly. For illustrative purposes only 50 of the 70
neurons are shown. (b) To model completely unrelated neurons we modified the external input to the network Iext by removing the oscillatory component and
enhancing the colored noise (In is increased 4 fold). Here, the external current is shown for each neuron. (c) The firing rates are modified in comparison to Fig. 2g as
the background neurons tend to disperse the theta oscillation due to their random spiking times. (d) Voltage levels of two theta oscillations after 5000ms. In dark red
we highlight the 25 neurons that spike randomly. (e) Using NetSAP, we analysed 22 simulations of 100 s each of a 70-neuron network with a variable number of
random spiking neurons ranging from 2 to 65. All the other parameters are kept identical to Fig. 10a.
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behavioral NetSAP analysis (functional connectivity) could provide
hints for how neurons exchange information. For these reasons, the
NetSAP procedure has the potential to become a valuable tool in the
analysis of multi-neuronal voltage recordings. Nevertheless, applica-
tions on experimental data will be essential in demonstrating NetSAP's
usefulness to a wider community.

One area of particular interest to us is the analysis of neural systems
affected by neurological disorders. In future work, we intend to explore
how neural networks can (or cannot) act in compromised states.
Consequently, applications will focus on highlighting aspects that play
a key role in neural deregulation, e.g., in the case of epileptic seizure
onset.

NetSAP is coded in CampaRi, an R package which is open source
and already available on gitlab (https://gitlab.com/CaflischLab/
CampaRi). This software is derived from the Fortran version of the
progress index algorithm implemented in CAMPARI. (http://campari.
sourceforge.net/index.html).
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