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ABSTRACT: Molecular dynamics simulations are a popylar MSM
means to study biomolecules, but it is oftercutii to gain 5 L‘- ﬂ

insights from the trajectories due to their large size, in bothtime = T T
and number of features. TheerBire (States And Pathways i qt
Projected with HIigh REsolution) plot allows a direct vigupt
inference of the dominant states visited by high-dimengi Q&
systems and how they are interconnected in time. Here, we e
this visual inference into a clustering algorithm. &yisgithe

automatic procedure derives from trer&Replot states that ares \
kinetically homogeneous, structurally annotated, and of tyhable
granularity. We provide a relative assessment of the Higlétic ~ '

of the SrrHIREbased partitioning in comparison to popular Progress Index

clustering methods. This assessment is carried out on trajectories

of n-butane, a-sheet peptide, and the small protein BPTI. We conclude with an application of our approach to a secent 100
trajectory of the main protease of SARS-CoV-2.

*otond

« »  Trajectory

43

1. INTRODUCTION guantitative methods to assess the MSM performance in terms
§f resolving kinetics at a global V8.

Molecular dynamics (MD) simulations are a powerful tool t In this work. we present a method that combines a compact
analyze complex systems at atomic resdlidioa.to their . Lo Pr . . ; > P
v-|r§uallzat|on of trajectories with ancient extraction of

scale, biomolecules like proteins undergo stochastic motion’|

aqueous solution. Because the data sets are large in termglxﬁters' The s8erireplot (States And Pathways Projected

both sampling time and dimensionality, it is frequentl)‘/v High REsolution), introduced in ré@and21, provides

; ; d . ! : -a comprehensive picture of all of the trajectorgomations.
impossible to identify the underlying conformational equmIn this type of plot, the snapshots are rearranged and grouped

brium from an inspection of MD trajectories (time series) ; . RN

alon€. * There is often a wide range of time scales involve(‘jaCcordlng to the|r geometric S|m|la.r|ty. and subsquently

and many of the atomistic details are primarily a source gpnotatgd b_y suitable variables that highlight conformatlonal!y
%w/or kinetically homogeneous states as well as the dynamics

noise. Thus, it is a natural goal to compress the trajectory inbetween themaBrHiREplOtS have been ectively applied to
a nite number of states, which singdithe comprehension the analvsis of both molecular své@hand neuronal
of the system and might directly reveal the local structures thgfa 32 . ySte

: : o . networks:* We introduce here an algorithm, callechRe
constitute the aforementioned equilibrium. To this end ased clustering (SbC), for the idaation of clusters, which
various sophisticated clustering techniques have begl1ies on the annotation’s displayed byaweiGeplot U’nlike
developed to recognize both metastable and transition stagﬁgst common clustering techniques, SbC takes direct but

for systems undergoing stochastic dynanfic®ther o ' X .
approaches expand these ideas by using proper objecg‘i'\%]mv'al advantage of the temporal information provided by

functions to drive the agglomeration of results from an initia € time series.

ne partitionina of the phase space obtained by commo ' The rest of the article is structured as follows. Wey brie
Pa 9 4 P P y Rview the theory underlying therssireplot (Section 2)1
clustering techniquas:

Most of the cited methods have either been applied to pefore describing in detail the SbC metBadi{on 2)2 The

o) . ! . N
directly rely on the implementation of kinetic models, such El{gmamder of thelethodsis dedicated to reviewing the tools

Markov state modéfs'’ (MSMs). MSMs have proven their
merit for extracting thermodynamic, kinetic, and pathwayeceived: June 12, 2020
information from suitable time series data. However, th@uPlished:September 9, 2020
deduction of an MSM from trajectories requires choosing

many (hyper)parameters, which necessitates the ability to

assess the quality of these models in comparative fashion.

Recent developments have advanced this issue by introducing
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Figure 1.Progress index algorithm amdrSirRemethodology. (a) Progress index construction. A time series traversingrémb siates is
shown (violet dots connected by gray edges) in a two-dimensional phase space. Pl values are assigreaxtt sndpstdits following a
minimum-linkage criterion (orange dots with numbering). The point that is next in line to be assigned in each image is outlined in orange. On
right, the resultant&Hireplot displays the actual temporal index as a function of the assigned progress index Valoes antiaation.
The“Kineti¢ annotation decreases monotonically with the number of temporal edges that separate the points indexed by Pl from the unassig
ones (orange edges in the three pictures to the left, which correspond to the little triangles)rébased clustering (SbC). An example
SappHIREPlOt forn-butane is shown in (1). Initially, clusters are separatelyeidémthe Time annotation (2) and in the Kinetic one (3). In (2),
the algorithm yields a set of partitions (vertical green lines) based on a 2D histogram of the dots. An initial partitioning is tested against a
hypothesibl, with a test statistic related to the Hellinger distance between adjacent states (lower panel). The partitions not céiypedible with
kept while the others are discarded (circled dots). In (3), putative states aegl idgratipeak identiation procedure on a normalized and

Itered kinetic annotation (orange line). Finally, in (4), the two sets of partitions from (2) and (3) are matched (black lines) and/or joined (greer
and orange lines).

and methods we chose for a quantitative comparison of tlkle METHODS
resultant MSMs as well as the data sets. Our tests are2.1. Progress Index and Sarprire Plot. For a full
performed on three dirent systems: a toy modsk(tion ~ description of the progress index algorithm aneHige

3 d | id hich di . gl t, we refer the reader to réfsand 21 For the sake of
) and two polypeptide systems, which are a medium-sizee ity the algorithm is also illustrated schematicalbyire

protein and a-sheet-forming peptidédc. 32 We nd that la. We start by considering a set of data points in a particular,
SbC vyields results that are robustly competitive with othétSually high-dimensional space. This spaceniddey the

tth hni h blishing i l features we extract from the raw data set, and we refer to it as
state-of-the-art techniques, thus establishing it as a usefu feature space below. The progress index method rearranges
for the quantitative investigation of time series. The article ke time frames (snapshots) into a new order, called progress

completed by an illustration of the entire SbC warkon index (PI), such that neighboring points are structurally similar
P y in the selected space. Sprdly, similarity must be ded in

recent MD simulations of the main protease of SARS-CoVigis space, and here, as in the original work, we always use the
(Section 3)3and by a concluding discussion. Euclidean distance as the metric of dissimilarity. While Pl = 1
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Figure 2.SaprHiReplots ofn-butane for two derent values of the amount of leaves pooling, LP (0 and 10). In practice, the successive assignmen
of Pl values shownfiigure & utilizes a spanning tree of the complete graph of snapshots. An LRivghlie€ollapsing terminal branches of

lengthn successively onto the« 1)th node. When then 1)th node is added to the PI, all the pooled snapshots from connected branches are
added immediately afterw&tén example of Pl reindexing via LP is shown on the mSTs abawvettireots (LP = 0 and 1 on the left and

on the right, respectively). Thee@ireplots show, from bottom to top, the kinetic, temporal, edge length, and structural annotations (dihedral
angles, color bar on top). Theeet of LP is visible in the distribution of edge lenfdg€). These are the edges on account of which a
snapshot was added. The points found at the rightmost side of the plot without LP (left) are uniformly reassigned to their respective parent be
when LP is performed (right). A subsampling by a factor of 5 was applied along the Pl axis due to reasons of plotting resolution.

is an arbitrary, initial choice, all subsequent indexes ade erent branches collapsing onto the parent node, leaves
assigned one-by-one by following a single-linkage criterioonnected by the shortest edges are adstéd
between the group of indexed points and those that have notThe progress index algorithm is implemented in the software
yet been indexed. CAMPARI (ttp://campari.sourceforge.net/A wrapper of

In practice, the algorithm relies on the minimum spanninghe original Fortran code has been used in the analysis (R
tree (mST) of the complete graph of snapshots where the edggckageCampaR). This includes also an implementation of
lengths correspond to the geometric distances between pairgff spc algorithm and is available on our public GitLab
_snapshots. The mST is used fuing the snapshots to be_ repository ifttps://gitlab.com/CaischLa
indexed next. In most of the cases, we adopt an approximates, ,,,rplot AnnotationsA simple and informative feature
version qf the mST, called short spanning tree ?(%ﬂgz)' ._that can be plotted with respect to the Pl is the original time
construction makes use of a hlerarch|cal_ clustering te hnIC]l.ilﬁdeXing‘ We will refer to this as the temporaTione’
whose parameters were tuned automatically accordithg to . . . L
hoccriteria. The overall settings are such that all Pls shown ﬁ{‘”"tat_"’”- Another hel_pful varlgble_ 1S thénetic

annotation. Given a PInzthis annotation is inversely related

this work are either exa@etion 3.Jand Section 3)3or h ber of " b h . £ Do
nearly exact (elsewhef@A potential adjustment of the PI to the number of transitions between the entire sets of points

indexing can be attained by the prior pooling, or aggregaticfﬁ’,the left and to the right of Oftgn, it is more |r!format|ve to

of the mST leaves into the parent vertex. In detail, by settingcOunt the number of transitions traversing a Pl-local
as the 0n|y parameter for this techniqu‘éea‘ﬁ/es poo“ﬁg neighborhOOd Uﬁ.zo When this is the case, we refer to this
(LP), then outer vertices of any branch will be folded inwards as the“local kinetic annotation, rather than as the
and collapsed onto the £ 1)th parent nodeRigure 2top). aforementionedglobdl one. The local kinetic annotation
Once the parent node is added by the PI algorithm, all theill be the default choice unless stated otherwise. The size of
pooled nodes are indexed consecutively to it. In the casetb& local Pl neighborhood is set to 10% of the data set size

C https://dx.doi.org/10.1021/acs.jctc.0c00604
J. Chem. Theory CompuXXX, XXX, XXX XXX


http://campari.sourceforge.net/
https://gitlab.com/CaflischLab
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00604?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00604?ref=pdf

Journal of Chemical Theory and Computation pubs.acs.org/JCTC

throughout the analysis, which is an empirical rule found taot be perfectly sharp and, more importantly, skewed to the
work su ciently well for the present work. right for the seS and to the left foR The reasons for this

2.2. SappHIRE-Based Clustering Algorithm. The SbC skew have to do with the Pl itself, with the actual sequence of
method employs only the temporal and the kinetic annotatiorssate visits in the trajectories, and with the binning. Due to the
of the BrrHIRE plot, that is, only those variables that areexpected derence between these two distributions, both sets
derived purely from the mapping from (simulation) time to theare initially analyzed separately. Cumulative distributions,
position in the Pl sequence. The algorithm relies on thare computed by integrating from left to iygwd from right
property of the PI of stepping sequentially through groups &b leftS We then convolutewith a Haar-like waveldt=[1,
nearby points in the feature space. In practice, we will identfy 1, 1, 1], and eventually we follow a naive peak
the states by placing barriers, or partitions, along the Rilenti cation criterion on the resulting smoothed lpso
sequence. In the initial steps, the algorithm extracts the clust@seFigure S1h A point is identied as a peak and, thus, as a
independently from the temporal and kinetic annotationgartition between two states if it is strictly larger than its two
respectively, and only at the very end both sets are mergecdjacent points. Arst rough clustering of the trajectory is

2.2.1. Clustering from the Temporal Annotation Alone. obtained by joining the two sets of partitions obtained=rom
Because of the properties of the Pl ordering, the temporahdS
annotation consists of‘llocky scatter plot. Putative states  Selection of Cluster&iven an initial set of partitions from
are identiable visually because each block is, ideally, a visitthe temporal annotation, we test the signice of these
a kinetically homogeneous state in time. Along the Pt-axis (partitions by comparing each pair of adjacent candidate states
axis), putative states are delineated while on the Timg axis (ith their reshued versions. In detail, given a Pl range
axis) the transitions between them and the possible recurrenestricted to a pair of adjacent clusters, we randomlby thieu
of visits are highlighted. Pl values within each histogram rowv The Hellinger

2-D HistogramTo account for this particular structure of distance between the two resulting time histograms is
the temporal annotation and to reduce the computation@lomputed. It measures the similarity of two distributions as
e ort, an underlying 2-D histogram is created, and only the bihe L2 norm of the dierence of the individual square root
frequencies are used during the analysi§i(sge Shaln vectors divided by 2. This procedure is repeated 50 times,
principle, the bin size on tlkeaxis, PI, has to be selected thus delivering a distribution of Hellinger distances that
according to the smallest cluster size that we want to identifgpresent a numerical null model in which the points form a
whereas the size on thaxis, t, has to be related to the single state. A one-sided Grubbs test is used with casigai
smallest residence time that we want to resolve. level = 0.005. The Grubbs test has the null hypothesis that

Temporal Stretchess a rst step, we identify on each row the data contain zero outliers and is applied to an individual
of the histogram a stretch of consecutive bigsré S)a  data point (here, the actual Hellinger distance) relative to an
Ideally, such a stretch indicates a visit of the putative stated8sumed normal distribution (here, the one derived from the
that particular t window. Givefy the vector of frequencies of numerical null model). If the actual Hellinger distance is
a selected row, two neighboring biasdj, are considered to  indeed deemed to be a (right) outlier, the partition is kept;
have a similar anchite density if both bins receive nonzero otherwise, the two clusters are joined togetheFjcsee b,
counts and their frequencies are within 50% of eacls othepanel 2, for an example. Both the Hellinger distance and the
value. We denote the minimum and the maximum indices Brubbs test were chosen for performance reasons after a broad
one of these stretches asds respectively. This allows us to search trialing several comparable methods.
de ne the center dmas$(sampling weightip, of the stretch 2.2.2. Clustering from the Kinetic Annotation Alofike
delimited by andsasm= (s K (=sfi basic idea is much simpler for the kinetic annotation than for

For the subsequent steps, each stretch is assigned a weigBttemporal one because the peaks of the kinetic annotation
that is meant to describe thaelity with which it captures a are expected to directly highlight the transition points between
residence interval of only one state. If the progress indeates. For this, it is largely inconsequential that their actual
groups snapshots by the underlying state perfectly, and #§ues cannot be used to quantitatively infer free energy
states are perfectly homogeneous, we expect the stretches tgibgrences between basth#\ two-pronged approach is

S+ r

balanced, i.em =-. Second, we want to heuristically benecial because the kinetic annotation can easily delineate

penalize stretches that are too long along the progress indé&tes that might be obfuscated in the temporal annotation, for
axis since these are likely to include multiple states due t#%@mple, if adjacent states in the Pl are also adjacent in time.
faulty detection of similarity in the previous procedure. We One of the disadvantages of the global kinetic annotation is
account for these properties by computing the f0||OWin€1at failures in identifying small states can occur in regions of

weight inherent curvature, i.e., at the extremities oh#raiplot.
In order to prevent this, we subtract from the kinetic
_mnMmS s S m ~rSs annotation the parabolic curve derived from assuming a
- maxm S s, 1S m)' Moy random exploration of the phase spaEeom now on, for

simplicity, the resulting curve will also be called the kinetic

whereng, is the number of bins along the Pl axis. annotation and denotedlas

Initial Partitioning.We assemble the Pl values of the left Smoothing FilterTo deal with the rugged surface of the
and right extremities of the stretches of bins with similakinetic annotation curve and to comply with the resolution of
frequenciess andr, into the set$ andR, respectively. If a the previous analysis, we employ a Savéipkgy lter with a
putative state is visited several times, we would expect thdhdow length equal tox2 Pl. Pl is exactly the same bin
histograms @andR, weighted by the aforementioned quality width as that chosen for the 2D histogrageirtion 2.2. We
measure, should be sharply peaked at the transition pointswill use as polynomial degrees of ttex both one, which
either side of that state. However, in practice, these peaks willresponds to a moving averdige, and two. Subsequently,
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we perform the naive peak ideg#tion introduced ifection (transformed) feature space. The optimization of the top
2.2.1with a window size equal to<2 PI. singular values of the operator, related to the slowest modes
Peaks Check and Projectiod simple heuristic is and summarized in the VAMP score, is thus largely related to
implemented to test the goodness of the idehtbeaks. the search of suitable transformations of the input feature
We denote asy and m,, the absolute minima &f,, the space. VAMP scores can not only provide comparisons
smoothed kinetic annotation, in the two adjacent statesetween dierent discretizations of a trajectory but can also
delimited by the three peaks,(|;, l;.1). We then compute operate directly on nondisized featurizations of the

the following ratio trajectory. This allows, e.g., a comparison of the inherent
. . ability of dierent features like dihedral angles or contact
kDS kehms) kdd S Kemm) 1 probabilities to capture the selected modes (se27 refis
kel S kehms): Kénl) S Kum) 1 28).

2.4. MD Trajectories, Procedures, and Settings.

where - indicates the average of the two arguments. If thé-4.1. MD Trajectories and Preprocessifiie rst system
ratioD; is lower than 0.05, the partitioning represented by pedRvestigated is the 58-residue bovine pancreatic trypsin
l; is discarded; séggure b, panel 3, for an example. The inhibitor (BPTI) simulated in its native state. We analyzed
remaining peaks are projected back onto the original kinefiére the 1.03 ms MD trajectory of Shaw &t with a
annotationk. Each maximurh is shifted to the absolute sampling time of 25 ns. The sine and cosine of 271 dihedral
maximum ok in the intervall[  PI,l;+ PI]. Asanal  angles, which exclude only thosengles where multiple
step, we check whether any two suggested partition boundaNasles map to the same conformation due to the presence of
are closer thanP!; if so, the one with the smaller valueisn ~ Symmetrical substituents (like in phenylalanine), were
discarded. extracted for further preprocessing. Despite this manual feature

The temporal and kinetic annotations provide two separag€lection, as shown in prior wdrkieature weights or
clustering results. They el conceptually in their resolution: dimensionality reduction are still needed to yield an
in particular, the partitions obtained from the Time annotatiofnformative feature space. Here, we use the latter (see below).
are placed discretely with a step siz®bivhereas the kinetic ~ The second system we analyze is Beta3S, a 20-residue
ones are idengd within snapshot resolution. To make thempeptide that folds into a three-stranded, antiparalielet as
homogeneous, west shift the Time partitions to the absolute its native staf& The data are a concatenation of 10 MD
maximum of the kinetic function within a neighborhooet of 2 trajectories, each of 2 length and recorded with a time

Pl. The two sets are then merged, and the barriers ar@solution of 0.2 ns. Here, we used the sine and cosine of all of
matched if they are closer thaRl, retaining only the one the available 103 dihedral angles.
with the highest kinetic annotation. All the partitions, matched For both systems, the extracted features were transformed
or not, are used in the analysis. This is important; i.e., we amith tICA****while also applying a published kinetic mapping
not looking for a consensus set but rather for an exhaustive sehemé” To reduce dimensionality, we retained onlyrtte
This is because both annotations on their own can lead to falt@ tICA components for subsequent analysis. The autocorre-
negatives as outlined above. lation lags used for BPTI and Beta3S were 500 and 4 ns,

2.3. Theoretical Framework: Markov State Models respectively.
and VAMP Scores. Markov state models (MSM) are a Inthe nal part of the article, we examine a trajectory of the
powerful framework to extract thermodynamic and kinetiapoform of the main protease of SARS-CS\(RDB entry
properties of a system from MD simulation'@fan brief, ~ 6Y84)>” The total sampling length is 108 and snapshots
MSMs utilize discrete trajectories to infer a transition matriwere saved every 1 ns. This enzyme is a homodimer with each
T( ) that succinctly describes the propagation of the systeghain composed of 306 residues. We preselected 865 of the
across dierent states. Each elemént indicates the available dihedral angles manually, which represent well over

conditional probability of reaching staarting fronj, in 50%. Without preselection, the density in the feature space is
a lag time. ApplyingT( ) to a probability distribution vector not su ciently informative even after an aggressive dimension-
at timet, one can obtain the probability distribution-at. ality reduction. We ignored the following classes of dihedral

This master-equation process is thus memoryless, i.angles: all dihedral angles in the 10 terminal residues on both
Markovian, and the chosen lag timenée an intrinsic  ends, all -angles in charged residues exgepll -angles,
lower bound for the time scales that can be resolved. the ,-angles in Ser, Thr, and Cys, theangles in Tyr, and
The eld of kinetic modeling has recently been extended Bgstly the ,- and j;-angles in Phe/Leu and Val, respectively.
the introduction of variational principles, which are used tdhe omissions for Phe, Leu, Val, and Tyr are due to symmetry.
nd the representation, or model, that optimally approximatéss for the previous systems, we utilized the data set of the sine
the slow dynamical processes of a s§/&té@ne of the main ~ and cosine of these angles for further preprocessing and
advantages of this approach comes from the availability asfalyses.
specic scores that allow for an objective comparison between2.4.2. Clustering Methodslhe discrete state space
di erent models and, in turn, for a properly guided selection abtained by SbC is compared to major methods employed
hyperparameter$’® Among these scores, we adopted in thein the current literature. In detail, we compare to k-means, k-
analysis those ded by the so-called variational approach fomedoids, and a hierarchical clustering with '&Vareth-
Markov processes (VAMP)In brief, a Markov process can od***® For simplicity, we will refer to the lattet\&krd.
be described by the Koopman equafidhyhich generalizes ~ 2.4.3. Markov State Models and VAMP Scdnesisition
the MSM master equation mentioned above. The Koopmamatrices were inferred via maximum likelihood estimation
equation consists of the application of a linear operator, tliem the MD trajectories, and we did not impose detailed
Koopman operator, on a suitably transformed feature spacebalance. We chose MSM lag times for BPTI and Beta3S of 500
order to provide the time evolution of a system in anotheand 20 ns, respectively. The VAMP-2 scores account for the
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rst 10 singular values, and they were computed also for tamong them, th&Edgé annotation is particularly revealing.
nondiscretized input features, i.e., sine and cosine values ofTthés annotation represents the length of the mST edge by
selected dihedral angles. All VAMP computations were croggiich a snapshot was added in the PI. The left paigliaf
validated with a 10- and 50-fold splitting of the discret® shows that higher values of Edge are present in the
trajectories for BPTI and Beta3S, respectively. Only thaforementioned PI region on the far right as well as on the
averages of the test-set scores are shown in the resuiight fringe of each basin. The right fringe region corresponds
pyEMMA 2.8° was used for Markov state modeling andto the transition and peripheral regions of the metastable states
calculations of related quantities. to the left. For high values of LP, these low-density regions are
2.4.4. Mean First Passage Timdsan rst passage times redistributed homogeneously within their parent metastable
(MFPTs) were evaluated between the two macrostates witttates (right panel &figure 2. Conversely, for LP = 0 (left
the largest statistical weights. In detail, for BPTI we used tipanel), points that are further away from their parent basin
two biggest macrostates idesttiby Shaw et &l For Beta3S, thanca 5 distance units are skipped and not added until the
the two macrostates were the three-stranded antiparallel very end. This is why the aforementioned state is not actually a
sheet corguration (the folded state) and an ensemble ofstate but rather a collection of points from mamyetit low-
states rich in-helical content. The latter wasribl as the set  density regions.
of snapshots featuring a sum of at lgast or -assignments The consequences of this reordering are apparent from the
according to DSSP across resitfuse annotations thus  kinetics of the MSM constructed based on the SbC results. In
provide a set of labels from which we can estimate MFPTFsgure 3the rst two implied time scales are shown both for
from the trajectories without further processing. This
estimation, also callédirect estimation, was performed by
counting the periods of transitions between the two sets of
clusters and averaging over thet passage times
observed-*?
Conversely, for a clustering result, the labels derived from
annotations are not necessarily homogeneous within a given
cluster. Thus, we require a strategy on how to assign
macrostate labels to the clusters of a given discrete trajectory.
To do so, for both of the two macrostates, we selected the
minimum set of clusters that contains at least 80% of the
macrostate snapshots. Here, minimum refers to the number of
clusters in the set. These two sets of clusters should largely
encompass the two macrostates, but they should not overlap
with other macrostates. MFPTs are expected to be insensitive
to the exclusion of some shapshots in a basin since there is a
large separation of time scales for relaxation within and
between states. In contrast, MFPTs can change dramatically
upon the accidental inclusion of snapshots fromeeeri
basin (eectively causing a kinetic shortcut). The MFPTs
between the two sets of clusters were calculated from the
MSMs by solving the related linear system of eqiafiols.  Figure 3.Implied time scales (ITS) ofbutane from ShC for
addition, the two sets of clusters were used toneedee di erent LP values as well as from other clustering methods. Values
macrostate labels: unlabeled snapshots in selected clusters w@&nguted on a binned phase space (12 bins per angle) are shown as a
labeled, and labeled snapshots outside of the selected clugfsence. The other implied time scales are computed from MSMs
were unlabeled. On these meditrajectories of labels, the based on 27 clusters. For SbC, we analyzed the global kinetic

direct calculation mentioned above was performed as well, 2M0tation with a moving averalger. For each LP value, SbC was
repeated 50 times with random settings,@&ndn;, both ranging

from 100 to 500. Results are shown for one partitioning selected at
random from the subset of results yielding exactly 27 states.

3. RESULTS AND DISCUSSION

3.1. Application to n-Butane. We apply the A8prHIRE
analysis to am-butane trajectory of 3@napshots with a SbC with dierent LP values and for other clustering methods
sampling time of 50 fs. The system has three degrees axfa comparison. All the MSMs are built with 27 states (see the
freedom, namely the dihedral angles associated with the thoegtion ofigure JFor details). As a reference, a gold standard
carbon carbon bonds. For the sake of PI construction, wSM is constructed using the binned phase space (12 bins for
measure the geometric distance as the Euclidean distanceach angle). ASgure 3hows, the accurate resolution of time
this three-dimensional space. The system has acées8%o 3 scales is challenging even for a toy model if the number of
metastable states, representing all the possible combinationstafes is small. The discretization error is not fully overcome by
the three stable cogurations of each angle (centered &, 180 any of the tested methods, especially at shorter lag times. For
6C°, and 60, respectively). Ifrigure 2 we show two  SbC, it is evident that an LP of about 10 iscimt to
applications of the PI algorithm, with correspondirg&e improve the kineticdelity of resultant MSMs to approach the
plots, with values of leaves pooling{t&jual to 0 and 10. A same performance as that of the other methods. This is mostly
substantial derence between the two ges is found in the  due to the elimination of the dse low-density region that
presence of the large and structurally inhomogéistatéds was previously acting as a kinetic shortcut for many transitions
visible on the rightmost side of the left panel. The annotatiorsetween states. A comparison of the two panéiguoé 2
provided by theAsprHIReplot clearly identify this region and, clearly hints at this ect because the lower height of the
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Figure 4. SxprHIReplot of MD trajectories for BPTI (a) and Beta3S (b). An example of SbC is shown gutesthy the gray vertical lines. The

kinetic and temporal (Time) annotations are the red curve and the gray dots (bottom and center), respectively. The annotations stacked on
di er in the two panels. For BPTI, we show as a reference the clustering results obtained b{} @hewbéiel green, magenta, orange, and
yellow for states &) and Xue et éﬁ(Ml, blue; M2, yellow; M3, magenta;gred; nasg orange; other states, green). Aboveythdihedral

angles of the Cys1€ys38 disuble bridge are plotted (color bar on top). For Beta3S, we show instead the DSSP annotation per residue (color
legend on top). Due to limitations in plotting resolution, a subsampling by factors of 2 and 5 was applied along the PI axis for BPTI and Betz
respectively.

barriers between states in the kinetic annotatiectsghese  highlight the main structural changes of the systems across the
kinetic shortcuts in the absence of LP. This is an illustrativd# erent states. For BPTI (panel a), we add a comparison to
example of the berwal eect of LP on the performance of the original kinetic clustering results derived by Shaw et al.
ShC-derived MSMs. In light of this, we paid attention for thalong with the partitioning suggested in Xue*et al.
other systems to set a LP valuecgntly large to adequately It is well-known that the slow dynamics of the simulated
capture the kinetics. As a practical note, we emphasize héoeled state of BPTI are largely driven by the desbkidge
that the values for LP should be dimensionality-depende@ys14 Cys38 Figure 4, upper panel), which is sient to
(the smaller, the larger). distinguish most of the states idextiby SbC. The large

3.2. Application to BPTI and Beta3S. We subsequently basin on the left splits further, which is not evident from the
applied the &rHiREmethodology to two simulation data sets disul de bridge annotation. The shape of the kinetic trace
for proteins. Therst is a very long MD (1.03 ms) simulation suggests that this state is not perfectly homogeneous; i.e., there
of the folded state ensemble of bovine pancreatic trypsame comparatively fast interchanges between substates that
inhibitor (BPTI)?* a 58-residue protein stabilized by three must be mapped to other degrees of freedom. The recognition
disul de bridges. The second is a concatenation of 10 MBf such shallow maxima could be avoided by adjusting the peak
simulations (20s cumulativé¥ of the reversible folding of detection heuristic describedSiaction 2.2,but we did not
Beta3S, a 20-residue peptide adopting a three-strasided ~ deem it necessary for the results presented here.
conformation along with several misfolds. We analyzedFor Beta3SHigure #), the states are characterized globally,
snapshots saved every 25 and 0.1 ns for BPTI and Beta@®jch we highlight using a comprehensive DSSP anri6tation.
respectively. In both cases, the distance measure used forTthe most populated state is the native fold, i.e., the three-
construction of the Pl is the Euclidean distance in the 1Gstranded -sheet corguration (large basin on the left). The
dimensional space of those tICA components with the largestminant misfold is a mainlyhelical set of states (right
autocorrelation values at lags of 500 and 4 ns for BPTI amdgion, visible in green in terms of secondary structure
Beta3S, respectively. tICA was applied to data sets of sine andotation). The remaining states are partially folded variants
cosine values of extracted dihedral angleSgsgen 2.4.1  of the native state, e.g., singh&irpins. Just as we observed
SprHIREpPlOts of the two trajectories are showfigure 4 for BPTI, the largest state is not fully homogeneous. As we
along with an example of the partitioning of the plot intoshowed previously,the native basin has kinetically well-
coarse clusters. The structural annotations were chosend® ned substates @iring in spect -angles that are easily
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Figure 5.VAMP-2 scores of BPTI and Beta3s fagrdnt clustering methods and settings. Mdtel0 singular components are used for the
calculation. The dots are based on mean test scores from a 10- and 50-fold cross validation for BPTI and Beta3S, respectively. For each i
dots are splayed out horizontally to improve readability, but this horizontal (sub)axis has no meaning. (a) VAMP-2 scores for four methods w
using variable clustering settings. Clustering parameters were sampled 200 times for eaclsr®itho® (@6 details). Bars and whiskers
represent average and standard deviation of mean test scores acerssitivdudiering settings. The dotted line and the gray stripe represent
VAMP scores obtained directly from the original features (sine and cosine of dihedrals). They correspond to the mean and standard error inte
respectively. (b) Relative VAMP-2 scores for matched numbers of clusters. Ward, k-means, and k-medoids were performed with the same ni
of clusters obtained by SbC for each of the 200 SbC samples. The dots represent the fractions of the highest score among the four methods. T
style box plots are plotted underneath. Note that Ward is a stable algorithm that will always give the same results for the same number of clu

obscured. Here, the use of tICA and reduction to 10 reasons in both systems). We adopted MSM lag times of 500
dimensions ensure their discovery. and 20 ns for BPTI and Beta3S, respectively.

3.2.1. VAMP Analysiale next compared our results from In Figure &, we show the VAMP scores computed across
ShC with other clustering methods by using the so-calldie aforementioned settings. We also display, as a reference,
VAMP scores (seégection 2.4)3within the MSM framework.  the VAMP scores computed on the original data set of sine/
These scores are expected to quantify how well the slmmsine values of dihedral angles (no tICA and no
dynamics of the system are approximated by the underlyidgnensionality reduction). With little eliences among the
MSM. The MSM was built on the state space partitioningzarious methods, SbC performs slightly better on both systems.
delivered by the clustering methods. The type of algorithm afhking into account also results from Husic and Pawee,
the clustering resolution are known to be dominantanalyzed the VAMP scores within the low range of clusters
determinants of the accuracy of an MSf1.First, we found by SbC. For each SbC partitioning, we set the
evaluated the VAMP scores for each method on a set of 266rresponding number of clusters as the target for the other
di erent partitionings. For SbC, we tested random values forethods, reclustered the data, and recomputed the VAMP
three dierent options, namely, a number of bins along the Pkcores. Results fiigure b partially alter the trends between
ne, and Timeny, ranging from 200 to 700, and the choice of methods, revealing, as in3&fthat a low number of states is
the smoothinglter, either a moving average or a Savitzky favored by VAMP. Nonetheless, SbC remains the best
Golay lter with degree two. For BPTI, we obtained a numbeperforming method along with Ward for BPTI, and it yields
of clusters ranging from 17 to 92, with a median value of 50alues within 95% of the top scores for Beta3S.

Regarding Beta3S, we idetti23 132 states with a median 3.2.2. Analysis of Mean First Passage Tifies.VAMP

value equal to 67. As is evident ffégure S2the primary  scores account cumulatively for ttsé slowest modes of the
determinant of the number of clusters discovered,is system providing, therefore, little or no speénformation
suggesting that SbC results with many clustens fddm about individual processes, which might be of particular
those with few primarily in terms of clusters with low overalhterest. In our case, for BPTI, we wanted to focus on the
sampling weight. The target numbers of clusters for the othigansitions between the two largest regions of the native state,
methods were also varied: we chose random values betweemaely, the red and blue states of the Shaw et alcatmssi

and 2000 for BPTI and between 20 and 5000 for Beta3S (fan Figure 4. Regarding Beta3S, we investigated the transitions
k-medoids only between 20 and 1500 for computationdletween the native fold (the three-strandsigeet) and the
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Figure 6 MFPTs of BPTI (a) and Beta3S (b) between the selected macrostates computed ierthmeealis and for both directions (top and
bottom). For BPTI, A and B indicate, respectively, the red and blue statShdhannotation irFigure 4. For Beta3S, A and B represent,
respectively, the three-strandastieet macrostate and thkelix-rich region (séeégure # andSection 2.4 for details). The gray, Tukey-style

box plots summarize the results of MSM-based MFPT calculations across the same set of discrete trajectofiesuamdyzed, iR00
trajectories per method where the number of clusters was matched to the particular value found by SbC. The red box plots summarize MSNV
MFPTs obtained by reassigning labels A and B based on the selected clusters. Finally, the dashed lines indicate the MFPTs estimated ¢
original sets of labels, and the shaded regions indicate the corresponding standard error computed ovstr ghessefeofimes.

region high in -helix content (sdeéigure 4#). Methodological  clusters has been merged, the others all being identical. This

details on MFPT computations can be fourkiriion 2.4.4  guaranteed mutual similarity is not present in the other
We calculated MFPTs between the respective sets tfchniques. For SbC, this is true not only because of the use of

reference states for both systems. We computed them nfk sST but primarily because of the ability to cmppaed

only from MSMs but also directly from the discrete trajectories;; seeFigure S2

where the state labels were assigned based on the selected sgtsr all methods, the direct estimates from the clustered

of clusters (se®ection 2.4)4In the latter case, MFPTs can be trajectories are generally consistent with the values computed

estimated with maximal time resolution, i.e., with a lag equal dgectly on the labeled trajectory (dashed lines). This is valid in

the sampling step. Because both estimates rely on thgrticular for SbC where median lines fall within the standard

clustering, they are subject to the discretization errors resultiggor of the reference values in both directions.

from the partitioning of phase space. Generally speakingns expected, the MSM estimates increase steadily with

discretization errors lead to an underestimation of the tiMggher |ag times overcoming eventually, on average, the direct

scale§; and their magnitude can be reduced by adopting @ggimates. Already at lag times equal to 125 ns, for all the
ner partitioning, especially across the transition rég@ms. oo except Ward, the lower tails observed on the direct

the other hand, this negative bias can be_ compensated b.y. U¥8mates are reduced, hinting at the presence of very short
higher values for the MSM lag time since rapid trans't'or?ansitions and, thus, at problems with the underlying

between nearby states will be neglétted. discretization. As expected, the data points corresponding to
In Figure 6 we show MFPT values from SbC and other T P ’ P P 9
nese lower tails largely correspond to small numbers of

clustering methods for both types of computation, viz., throu Usters (22 upon visual inspection). Focusing on the same
MSMs (gray scale) and from the trajectory of cluster indic ) ) . :
(gray ) ) y ng time used in VAMP scoring= 500 ns, the overlap

(direct estimation in red). We analyzed the same set ] . . :
clusterings used fifigure B, that is, with the number of states etween the MSM values and either of the direct estimates is

paired to SbC results. As an additional point of reference, tMgak for aimost all methods and both directions. However, this
MFPTs estimated directly from the original set of labels afé: @s alluded to above, expected: direct estimates are likely to
included as well (dashed horizontal lines). These numbers 4@ underestimates because the data are inferred from
not based on clustering and are a function of only the tim&ajectories of nite length, and, more importantly, fast
sequences of the labels A and B assigned to the snapshotéansitions, which might be indicative'sffortcut$ arising

the two selected macrostates. For BRGL(e @), regardless  from utilizing discrete labélgre Itered by choosing long lag

of the computation type, Ward exhibits generally smallémes.

variances, proving to be robust with respect to the number ofln Figure 6, we show the MFPT estimates for Beta3S. They
clusters. Ward is a strictly hierarchical agglomeration schemgfer to transitions between the three-strandhdet and the
which means that the drence in two clusterings of -helical state. All the MFPTs estimates have smaller relative
N vs N+ 1 clusters is that an additional pair ofNhe 1 errors than those of BPTI. This is likely due to the higher
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Figure 7.SappHireplot created from MD simulatiéhsf theapoform of 3CP™ (PDB entry 6Y84)’ We isolated from the trajectories the two

chains composing the homodimer and concatenated them in time. The 10 PCs with largest variance whernrsgooengdhe calculated

from a data set of 865 dihedral angles (sine and cosine) and retained for Pl analysis. We adopted an LP value of 15. The difregitakangles o
highest loadings to these 10 PCs are shown (structural annotation with color bar on“tdp{. dfeotation is the normalized number of
interchanges between the two ché&idhgiri annotation below) in a centered Pl window of 500 snapshots. The results of SbC are shown as
vertical lines. In total, 54 clusters are id=htivhen using 300 and 200 as the numbers of bins along the Pl and Time axes, respectively (see
Section 22 The “Macrd annotation indicates the eight macrostates igléity applying the PCCA+ algorithm to the SbC result using a lag

time of 100 ns (s€dgure or visualizations of snapshots representing these states). For reasons of plotting resolution, a regular subsampling |
factor of 10 was applied along the Pl axis.

number of transitions between the two macrostates und#re labels, in particular for the natisgheet conformation of
investigation (compare Time annotatiorfSigaire J. Beta3S. This is demonstratelligure S3vhere the two types
While the shortest lag times evaluated here match the diresft MFPT estimates reconcile when using a&iently high
estimates best, there are clear indications that this referencaumber of clusters. Second, and this is the major concern, the
of limited use for Beta3S. First, thesdint types of direct MFPTs are very similar for both directions while the
estimates do not match consistefilyure 6relies on low  equilibrium state weights are not: the latter display a ratio of
numbers of clusters, but the free energy landscape of Beta3&igl; sed-igure $ andFigure S4The MSM-based MFPTs
rich in many smaller yet mutually similar states (companeproduce this asymmetry much better at all lag times. The
Figures @ and b). Thus, aner clustering is necessary in order primary reason for the failure of direct estimates is the same
to capture correctly the macrostate boundaries derived froome discussed for BPTI, i.e., shortcuts introduced by using
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Figure 8.Kinetic network of 3CL°. (a) We show the six macrostates annotatéidine 7that are shared by both chains. The colors are the
same. The relative weights of the macrostates and the MFPTs between them are added as labels to the vertices and edges, respectively. Th
are obtained for both chains separately (color code at the bottom of (a)). MFPTs are shown for both directions in units of micresteconds: the
value refers to the transition from left to right, the second to the opposite direction. Edges corresponding to less than 25 counts are omitted a
transition between the brown and red states (chain 2 only, MFPTs 0.7/23.4). The MFPTs were inferred from a nonreversible MSM with a lag ti
of 100 ns. The edge widths are proportional to the number of transitions between the macrostates. (b) The snapshots closest to the centro
each of the eight macrostates in terms of the metric USgdrim Avere identied and are shown using the same color scheme. Note that the
yellow and light pink states are not part of the network in (a). Chains were alignedaising.®rotein backbone conformations are depicted

as tubes. Heavy atoms in side chains of spesidues appearingHigure 7are shown but only for the red macrostate. Residue stretches or
individual side chains are annotated by legends and either arrows or boxes. The images on the leér doycarighation of 18@round the

vertical axis. Some side chains produce variance that does not appear to be structurally important like the contact pair Met17/Asn28.

labels that fail to resolve kinetically distinct states. For Beta3farkovianity tend to suggest lag times that are too large when
this is a well-known problem when using secondary structui¥ing to match steady state probabilities with a groungtruth.
annotations to identify staté&’ Notably, it is not possible to ~ 3:3. Analysis of SARS-CoV-2 Main Protease. In the nal

infer stringently frorfiigure Bwhich of the tested lag times is P& of this work, we examine a publicly available MD
genty g g ajectory of the unliganded main protease of SARS*CoV-2

. r
most appropriate. However, the data suggest that shorter B entry 6Y84) This system serves here to illustrate the
times are better for both systems. Tests for Markovianity dg. e spC worlow to highlight the ease with which a very

not provide unequivocal evidence for the use of either thgrge and complicated data set can be mined to extract results
shortest or longest lag time evaluategli(es S5 and 56n ready for human comprehension. The total sampling length
recent work, we observed similarly that indirect tests @hd time resolution of the data are 1@ and 1 ns,
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respectively. This enzyme, also call€ti dvl 3CLP™°, is a generated bX MD simulations. The construction of the
homodimer with the two chains oriented perpendicular to eacrrHire plot?®?*?® which is inherent to SbC, allows for an
other (seéd-igure S) Each chain is composed of 306 residues ective visual inspection of the putative states and pathways
grouped into three domaffis. of a system at maximal (snapshot) resolution. The clustering is
For the @ppHIREpIpeline, the dynamics of the two chains obtained from partitioning along the Pl using both kinetic and
were treated separately by concatenating the two subsystemporal annotationgiure ). It is an advantage that the
trajectories. The resultant data set comprised 865 dihedradture of the identd clusters is directly apparent from the
angles extracted from the central 286 of the 306 residues [@arpHIReploOt provided that suitable annotations are used (see,
chain arranged into 2 1¢° snapshots. The data set was for exampleFigure 4 in particular for Beta3S). While the
preprocessed by applying a principal component analysis to #pplications here are on conformational equilibriesire
sine and cosine values of the dihedrals and retaining the gldts and thus SbC can be used equally well to characterize
principal components (PCs) with largest variance but skippirgher stochastic systems such as binding eddfliboa
the rst one. Therst component is omitted since it primarily neuronal networks.
separates the two chains by featuring high loadings for dihedratven though the sampling density in a selected feature space,
angles that rarely move but are consistentlyedi between  often explored through spanning trees, is the foundation for
chains 1 and 2. The distance metric used for constructing thfee identication of metastable and transition states,a
Pl was the Euclidean distance in this 10-dimensional spade&ect inclusion of temporal information has proven diehe
Results obtained with other preprocessing pipelines are showemporal information can be incorporated into clustering
in the Supporting Information techniques in dérent ways: directiyor by the inclusion of
In Figures ands, we present the results of our analysis; theime-based feature weights either difettlyor through
salient aspects are summarized as follows. FirskrtheeS  tICA>*** The latter category has been complemented by the
analysis indicates that sampling has not reached convergeimteoduction of purely kinetic modeling techniques that rely,
As a symmetric homodimer, we expect both chains to accéssexample, on basis $&#hd provide a variational principle
the same conformational states. However, there are phdse the systematic evaluation of MSMs. The clustering
space regions visited only by one of the two, e.g., the rightmafgorithm is one of the hyperparameters of a traditional
Pl area inFigure 7 The sampling overlap between chainsMSM, and it has been argued that methods optimizing
decreases dramatically if th&t PC is included (séggure variance- or mean-based criteria, such as Ward and k-means,
S§ or if instead we use the 10 tICA modes with largestire best-suited to maintain kinetitelity in the resultant
autocorrelation values (again, skippingrét@ne, seBigure  MSMs3®
S9. Second, the relatively coarse viesvedl by the 10 PCs In this work, we showed that arisire plot with its
allows SbC to identify 44 states visited by both chains and $€andard kinetic and temporal annotations isiesut to
states sampled by only one of the two chains (4 and 6 falerive a clustering that yields MSMs whose kinetic perform-
chains 1 and 2, respectively). The latter areedeas states ance from tICA-transformed data is competitive relative to the
that have more than 95% of the cluster weight coming froepplication of Ward or k-medoids. We readily acknowledge
only one chain. The major éiences between states at the that this conclusion is based on matching the numbers of
backbone dihedral angle level are localized in tHe8 43 clusters; seéigures b and6. It is a caveat that SbC has only
stretch of a loop that is part of the S2 pdERetThe intrinsic indirect control over the number of states it produces, in
exibility of this loop might play a role in substrate bindingarticular through the numbers of bins on the Pl and time
and/or product release. In addition, there is a set of side chaiages. We demonstrated that the pooling of spanning tree leaves
in direct contact with this loop (residues 82, 87, 188, 190, an@lP), which is a property of therBrireplot itself, can be
192), which contribute strongly to the selected PCs. Thieenecial for deriving MSMs because it acts as ective
remaining residues that do so are more isolated, e.g., Metlitping technique for low-density fringe regions surrounding
and Asn28, which form a tertiary contact-sgee 8. Third, states Figures Zand3). While an automatic selection of the
we summarize these 54 states by lumping them via PCCAbC (hyper)parameters might be of interest, the heuristic is in
(“Macrd annotation inFigure ¥ into eight states. The six part spect to the goal of our analysis. The simplest and most
states withnite sampling weights in both chains were isolatedeneral rule is that the bin sizes need to be set according to the
and used to derive the sim@dl kinetic network shown in  minimum sampling weights and residence times of the states to
Figure 8 The network, which uses a lag time of 100 ns and ise identied. For LP, our general recommendation is to
split by a chain, reveals that the chains share several transiticisose the smallest possible value that amndidg a diuse
with often similar rates (MFPTs in the low-to-sub micro-set of mutually unrelated points fromedént regions of low
second regime). This holds as long as the transition is betwesampling density on the right of ther8ireplot. However,
well-sampled states in the respective chain. Importantly, settihgg might hinder the detection of actual low-density states,
the caveats about the limited amount of sampling aside, thad a smaller or zero value magr additional insights in this
resultant kinetic network is human-comprehensible and cowdenario.
be integrated into a larger kinetic model of the active cycle ofThere are several betseof SbC. First, it is a clustering
this protease. In turn, kinetic models of this type are needed technique that can produce clusters of arbitrary size and shape
make predictions about thecacy of interfering with its in the selected feature space. Second, it is a scalable technique;

function through pharmaceutical or other strategies. i.e., computational cost increases nearly linearly with data set
size. This is because the computational time added by SbC to
4. CONCLUSION AND OUTLOOK the SrpHiRealgorithm is insensitive to data set size~{gees

We have introduced a method for time-series clustering thai) whereas the computation of the Pl based on a sST scales
derives from an unsupervised data-mining technique develoged(Nlog N) with the number of snapshots and linearly with
to e ciently analyze high-dimensional data sets such as thase number of features in the data$&hird, and this is
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probably the main berteof SbC, it is immediately possible to interesting discussions and for the development of the R
both visualize the states and diagnose the result. For exampiekagéCampaRi This work was supportesincially by an

from the left panel éfigure 2it is obvious that there is anill- excellence grant of the Swiss National Science Foundation
de ned state that serves as a kinetic hub, which here is @1003A 169007) to A.C.

arti cial shortcut. Similarly, froligure 7 it is immediately
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