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ABSTRACT:Molecular dynamics simulations are a popular
means to study biomolecules, but it is often di� cult to gain
insights from the trajectories due to their large size, in both time
and number of features. The SAPPHIRE (States And Pathways
Projected with HIgh REsolution) plot allows a direct visual
inference of the dominant states visited by high-dimensional
systems and how they are interconnected in time. Here, we extend
this visual inference into a clustering algorithm. Speci� cally, the
automatic procedure derives from the SAPPHIREplot states that are
kinetically homogeneous, structurally annotated, and of tunable
granularity. We provide a relative assessment of the kinetic� delity
of the SAPPHIRE-based partitioning in comparison to popular
clustering methods. This assessment is carried out on trajectories
of n-butane, a� -sheet peptide, and the small protein BPTI. We conclude with an application of our approach to a recent 100� s
trajectory of the main protease of SARS-CoV-2.

1. INTRODUCTION
Molecular dynamics (MD) simulations are a powerful tool to
analyze complex systems at atomic resolution.1 Due to their
scale, biomolecules like proteins undergo stochastic motion in
aqueous solution. Because the data sets are large in terms of
both sampling time and dimensionality, it is frequently
impossible to identify the underlying conformational equili-
brium from an inspection of MD trajectories (time series)
alone.2� 4 There is often a wide range of time scales involved,
and many of the atomistic details are primarily a source of
noise. Thus, it is a natural goal to compress the trajectory into
a � nite number of states, which simpli� es the comprehension
of the system and might directly reveal the local structures that
constitute the aforementioned equilibrium. To this end,
various sophisticated clustering techniques have been
developed to recognize both metastable and transition states
for systems undergoing stochastic dynamics.5� 8 Other
approaches expand these ideas by using proper objective
functions to drive the agglomeration of results from an initial,
� ne partitioning of the phase space obtained by common
clustering techniques.9� 14

Most of the cited methods have either been applied to or
directly rely on the implementation of kinetic models, such as
Markov state models15� 17 (MSMs). MSMs have proven their
merit for extracting thermodynamic, kinetic, and pathway
information from suitable time series data. However, the
deduction of an MSM from trajectories requires choosing
many (hyper)parameters, which necessitates the ability to
assess the quality of these models in comparative fashion.
Recent developments have advanced this issue by introducing

quantitative methods to assess the MSM performance in terms
of resolving kinetics at a global level.18,19

In this work, we present a method that combines a compact
visualization of trajectories with an e� cient extraction of
clusters. The SAPPHIRE plot (States And Pathways Projected
with HIgh REsolution), introduced in refs20and21, provides
a comprehensive picture of all of the trajectory con� gurations.
In this type of plot, the snapshots are rearranged and grouped
according to their geometric similarity and subsequently
annotated by suitable variables that highlight conformationally
and/or kinetically homogeneous states as well as the dynamics
between them. SAPPHIREplots have been e� ectively applied to
the analysis of both molecular systems22,23 and neuronal
networks.24 We introduce here an algorithm, called SAPPHIRE-
based clustering (SbC), for the identi� cation of clusters, which
relies on the annotations displayed by the SAPPHIREplot. Unlike
most common clustering techniques, SbC takes direct but
nontrivial advantage of the temporal information provided by
the time series.

The rest of the article is structured as follows. We brie� y
review the theory underlying the SAPPHIREplot (Section 2.1)
before describing in detail the SbC method (Section 2.2). The
remainder of theMethodsis dedicated to reviewing the tools
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and methods we chose for a quantitative comparison of the

resultant MSMs as well as the data sets. Our tests are

performed on three di� erent systems: a toy model (Section

3.1) and two polypeptide systems, which are a medium-sized

protein and a� -sheet-forming peptide (Sec. 3.2). We� nd that

SbC yields results that are robustly competitive with other

state-of-the-art techniques, thus establishing it as a useful tool

for the quantitative investigation of time series. The article is

completed by an illustration of the entire SbC work� ow on

recent MD simulations of the main protease of SARS-CoV-2

(Section 3.3) and by a concluding discussion.

2. METHODS
2.1. Progress Index and SAPPHIRE Plot. For a full

description of the progress index algorithm and SAPPHIRE

plot, we refer the reader to refs20 and 21. For the sake of
clarity, the algorithm is also illustrated schematically inFigure
1a. We start by considering a set of data points in a particular,
usually high-dimensional space. This space is de� ned by the
features we extract from the raw data set, and we refer to it as
the feature space below. The progress index method rearranges
the time frames (snapshots) into a new order, called progress
index (PI), such that neighboring points are structurally similar
in the selected space. Speci� cally, similarity must be de� ned in
this space, and here, as in the original work, we always use the
Euclidean distance as the metric of dissimilarity. While PI = 1

Figure 1.Progress index algorithm and SAPPHIREmethodology. (a) Progress index construction. A time series traversing two di� erent states is
shown (violet dots connected by gray edges) in a two-dimensional phase space. PI values are assigned to the di� erent snapshots following a
minimum-linkage criterion (orange dots with numbering). The point that is next in line to be assigned in each image is outlined in orange. On the
right, the resultant SAPPHIREplot displays the actual temporal index as a function of the assigned progress index values in the“Time” annotation.
The“Kinetic” annotation decreases monotonically with the number of temporal edges that separate the points indexed by PI from the unassigned
ones (orange edges in the three pictures to the left, which correspond to the little triangles). (b) SAPPHIRE-based clustering (SbC). An example
SAPPHIREplot forn-butane is shown in (1). Initially, clusters are separately identi� ed in the Time annotation (2) and in the Kinetic one (3). In (2),
the algorithm yields a set of partitions (vertical green lines) based on a 2D histogram of the dots. An initial partitioning is tested against a null
hypothesisH0 with a test statistic related to the Hellinger distance between adjacent states (lower panel). The partitions not compatible withH0 are
kept while the others are discarded (circled dots). In (3), putative states are identi� ed by a peak identi� cation procedure on a normalized and
� ltered kinetic annotation (orange line). Finally, in (4), the two sets of partitions from (2) and (3) are matched (black lines) and/or joined (green
and orange lines).
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is an arbitrary, initial choice, all subsequent indexes are
assigned one-by-one by following a single-linkage criterion
between the group of indexed points and those that have not
yet been indexed.

In practice, the algorithm relies on the minimum spanning
tree (mST) of the complete graph of snapshots where the edge
lengths correspond to the geometric distances between pairs of
snapshots. The mST is used for� nding the snapshots to be
indexed next. In most of the cases, we adopt an approximate
version of the mST, called short spanning tree (sST).20 Its
construction makes use of a hierarchical clustering technique6

whose parameters were tuned automatically according toad
hoccriteria. The overall settings are such that all PIs shown in
this work are either exact (Section 3.1and Section 3.3) or
nearly exact (elsewhere).25 A potential adjustment of the PI
indexing can be attained by the prior pooling, or aggregation,
of the mST leaves into the parent vertex. In detail, by settingn
as the only parameter for this technique of“leaves pooling”
(LP), then outer vertices of any branch will be folded inward
and collapsed onto the (n + 1)th parent node (Figure 2, top).
Once the parent node is added by the PI algorithm, all the
pooled nodes are indexed consecutively to it. In the case of

di� erent branches collapsing onto the parent node, leaves
connected by the shortest edges are added� rst.25

The progress index algorithm is implemented in the software
CAMPARI (http://campari.sourceforge.net/). A wrapper of
the original Fortran code has been used in the analysis (R
package“CampaRi”). This includes also an implementation of
the SbC algorithm and is available on our public GitLab
repository (https://gitlab.com/Ca� ischLab).

SAPPHIREPlot Annotations.A simple and informative feature
that can be plotted with respect to the PI is the original time
indexing. We will refer to this as the temporal or“Time”
annotation. Another helpful variable is the“Kinetic”
annotation. Given a PI =n, this annotation is inversely related
to the number of transitions between the entire sets of points
to the left and to the right ofn. Often, it is more informative to
count the number of transitions traversing a PI-local
neighborhood ofn.20 When this is the case, we refer to this
is as the“local” kinetic annotation, rather than as the
aforementioned“global” one. The local kinetic annotation
will be the default choice unless stated otherwise. The size of
the local PI neighborhood is set to 10% of the data set size

Figure 2.SAPPHIREplots ofn-butane for two di� erent values of the amount of leaves pooling, LP (0 and 10). In practice, the successive assignment
of PI values shown inFigure 1a utilizes a spanning tree of the complete graph of snapshots. An LP value ofn implies collapsing terminal branches of
lengthn successively onto the (n + 1)th node. When the (n + 1)th node is added to the PI, all the pooled snapshots from connected branches are
added immediately afterward.25 An example of PI reindexing via LP is shown on the mSTs above the SAPPHIREplots (LP = 0 and 1 on the left and
on the right, respectively). The SAPPHIREplots show, from bottom to top, the kinetic, temporal, edge length, and structural annotations (dihedral
angles, color bar on top). The e� ect of LP is visible in the distribution of edge lengths (“Edge”). These are the edges on account of which a
snapshot was added. The points found at the rightmost side of the plot without LP (left) are uniformly reassigned to their respective parent basins
when LP is performed (right). A subsampling by a factor of 5 was applied along the PI axis due to reasons of plotting resolution.
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throughout the analysis, which is an empirical rule found to
work su� ciently well for the present work.

2.2. SAPPHIRE-Based Clustering Algorithm. The SbC
method employs only the temporal and the kinetic annotations
of the SAPPHIRE plot, that is, only those variables that are
derived purely from the mapping from (simulation) time to the
position in the PI sequence. The algorithm relies on the
property of the PI of stepping sequentially through groups of
nearby points in the feature space. In practice, we will identify
the states by placing barriers, or partitions, along the PI
sequence. In the initial steps, the algorithm extracts the clusters
independently from the temporal and kinetic annotations,
respectively, and only at the very end both sets are merged.

2.2.1. Clustering from the Temporal Annotation Alone.
Because of the properties of the PI ordering, the temporal
annotation consists of a“blocky” scatter plot. Putative states
are identi� able visually because each block is, ideally, a visit of
a kinetically homogeneous state in time. Along the PI axis (x-
axis), putative states are delineated while on the Time axis (y-
axis) the transitions between them and the possible recurrence
of visits are highlighted.

2-D Histogram.To account for this particular structure of
the temporal annotation and to reduce the computational
e� ort, an underlying 2-D histogram is created, and only the bin
frequencies are used during the analysis (seeFigure S1a). In
principle, the bin size on thex-axis,� PI, has to be selected
according to the smallest cluster size that we want to identify,
whereas the size on they-axis,� t, has to be related to the
smallest residence time that we want to resolve.

Temporal Stretches.As a� rst step, we identify on each row
of the histogram a stretch of consecutive bins (Figure S1a).
Ideally, such a stretch indicates a visit of the putative state in
that particular� t window. Givenf, the vector of frequencies of
a selected row, two neighboring bins,i andj, are considered to
have a similar and� nite density if both bins receive nonzero
counts and their frequencies are within 50% of each other’s
value. We denote the minimum and the maximum indices in
one of these stretches asr ands, respectively. This allows us to
de� ne the center of“mass” (sampling weight),m, of the stretch
delimited byr andsasm = � k = s

r fk k/ � k = s
r fk.

For the subsequent steps, each stretch is assigned a weight
that is meant to describe the� delity with which it captures a
residence interval of only one state. If the progress index
groups snapshots by the underlying state perfectly, and the
states are perfectly homogeneous, we expect the stretches to be
balanced, i.e., � +m s r

2
. Second, we want to heuristically

penalize stretches that are too long along the progress index
axis since these are likely to include multiple states due to a
faulty detection of similarity in the previous procedure. We
account for these properties by computing the following
weight
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wherenPI is the number of bins along the PI axis.
Initial Partitioning.We assemble the PI values of the left

and right extremities of the stretches of bins with similar
frequencies,s and r, into the setsS and R, respectively. If a
putative state is visited several times, we would expect that
histograms ofSandR, weighted by the aforementioned quality
measure, should be sharply peaked at the transition points on
either side of that state. However, in practice, these peaks will

not be perfectly sharp and, more importantly, skewed to the
right for the setS and to the left forR. The reasons for this
skew have to do with the PI itself, with the actual sequence of
state visits in the trajectories, and with the binning. Due to the
expected di� erence between these two distributions, both sets
are initially analyzed separately. Cumulative distributions,� ,
are computed by integrating from left to rightRand from right
to leftS. We then convolute� with a Haar-like waveletH = [1,
1, 1, � 1, � 1], and eventually we follow a naive peak
identi� cation criterion on the resulting smoothed pro� les
(seeFigure S1b). A point is identi� ed as a peak and, thus, as a
partition between two states if it is strictly larger than its two
adjacent points. A� rst rough clustering of the trajectory is
obtained by joining the two sets of partitions obtained fromR
andS.

Selection of Clusters.Given an initial set of partitions from
the temporal annotation, we test the signi� cance of these
partitions by comparing each pair of adjacent candidate states
with their reshu� ed versions. In detail, given a PI range
restricted to a pair of adjacent clusters, we randomly shu� e the
PI values within each histogram row� t. The Hellinger
distance between the two resulting time histograms is
computed. It measures the similarity of two distributions as
the L2 norm of the di� erence of the individual square root
vectors divided by� 2. This procedure is repeated 50 times,
thus delivering a distribution of Hellinger distances that
represent a numerical null model in which the points form a
single state. A one-sided Grubbs test is used with a signi� cance
level� = 0.005. The Grubbs test has the null hypothesis that
the data contain zero outliers and is applied to an individual
data point (here, the actual Hellinger distance) relative to an
assumed normal distribution (here, the one derived from the
numerical null model). If the actual Hellinger distance is
indeed deemed to be a (right) outlier, the partition is kept;
otherwise, the two clusters are joined together; seeFigure 1b,
panel 2, for an example. Both the Hellinger distance and the
Grubbs test were chosen for performance reasons after a broad
search trialing several comparable methods.

2.2.2. Clustering from the Kinetic Annotation Alone.The
basic idea is much simpler for the kinetic annotation than for
the temporal one because the peaks of the kinetic annotation
are expected to directly highlight the transition points between
states. For this, it is largely inconsequential that their actual
values cannot be used to quantitatively infer free energy
di� erences between basins.20 A two-pronged approach is
bene� cial because the kinetic annotation can easily delineate
states that might be obfuscated in the temporal annotation, for
example, if adjacent states in the PI are also adjacent in time.

One of the disadvantages of the global kinetic annotation is
that failures in identifying small states can occur in regions of
inherent curvature, i.e., at the extremities of the SAPPHIREplot.
In order to prevent this, we subtract from the kinetic
annotation the parabolic curve derived from assuming a
random exploration of the phase space.20 From now on, for
simplicity, the resulting curve will also be called the kinetic
annotation and denoted ask.

Smoothing Filter.To deal with the rugged surface of the
kinetic annotation curve and to comply with the resolution of
the previous analysis, we employ a Savitzky� Golay� lter with a
window length equal to 2× � PI. � PI is exactly the same bin
width as that chosen for the 2D histogram inSection 2.2.1. We
will use as polynomial degrees of the� lter both one, which
corresponds to a moving average� lter, and two. Subsequently,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00604
J. Chem. Theory Comput.XXXX, XXX, XXX� XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00604/suppl_file/ct0c00604_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00604/suppl_file/ct0c00604_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00604/suppl_file/ct0c00604_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00604?ref=pdf


we perform the naive peak identi� cation introduced inSection
2.2.1with a window size equal to 2× � PI.

Peaks Check and Projection.A simple heuristic is
implemented to test the goodness of the identi� ed peaks.
We denote asmi and mi+1 the absolute minima ofksm, the
smoothed kinetic annotation, in the two adjacent states
delimited by the three peaks (li� 1, li, li+1). We then compute
the following ratio

=
� Š Š �

� Š Š �
Š +

Š Š + +

D
k l k m k l k m

k l k m k l k m

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )i
i i i i

i i i i

sm sm 1 sm sm 1

sm 1 sm 1 sm 1 sm 1

where� ···� indicates the average of the two arguments. If the
ratioDi is lower than 0.05, the partitioning represented by peak
li is discarded; seeFigure 1b, panel 3, for an example. The
remaining peaks are projected back onto the original kinetic
annotation,k. Each maximumli is shifted to the absolute
maximum ofk in the interval [li � � PI, li + � PI]. As a� nal
step, we check whether any two suggested partition boundaries
are closer than� PI; if so, the one with the smaller value ink is
discarded.

The temporal and kinetic annotations provide two separate
clustering results. They di� er conceptually in their resolution:
in particular, the partitions obtained from the Time annotation
are placed discretely with a step size of� PI whereas the kinetic
ones are identi� ed within snapshot resolution. To make them
homogeneous, we� rst shift the Time partitions to the absolute
maximum of the kinetic function within a neighborhood of 2×
� PI. The two sets are then merged, and the barriers are
matched if they are closer than� PI, retaining only the one
with the highest kinetic annotation. All the partitions, matched
or not, are used in the analysis. This is important; i.e., we are
not looking for a consensus set but rather for an exhaustive set.
This is because both annotations on their own can lead to false
negatives as outlined above.

2.3. Theoretical Framework: Markov State Models
and VAMP Scores. Markov state models (MSM) are a
powerful framework to extract thermodynamic and kinetic
properties of a system from MD simulation data.15,16 In brief,
MSMs utilize discrete trajectories to infer a transition matrix
T(� ) that succinctly describes the propagation of the system
across di� erent states. Each elementTij indicates the
conditional probability of reaching statei, starting fromj, in
a lag time� . ApplyingT(� ) to a probability distribution vector
at timet, one can obtain the probability distribution att + � .
This master-equation process is thus memoryless, i.e.,
Markovian, and the chosen lag time de� nes an intrinsic
lower bound for the time scales that can be resolved.

The � eld of kinetic modeling has recently been extended by
the introduction of variational principles, which are used to
� nd the representation, or model, that optimally approximates
the slow dynamical processes of a system.26,27 One of the main
advantages of this approach comes from the availability of
speci� c scores that allow for an objective comparison between
di� erent models and, in turn, for a properly guided selection of
hyperparameters.18,28 Among these scores, we adopted in the
analysis those de� ned by the so-called variational approach for
Markov processes (VAMP).19 In brief, a Markov process can
be described by the Koopman equation,29,30 which generalizes
the MSM master equation mentioned above. The Koopman
equation consists of the application of a linear operator, the
Koopman operator, on a suitably transformed feature space, in
order to provide the time evolution of a system in another

(transformed) feature space. The optimization of the top
singular values of the operator, related to the slowest modes
and summarized in the VAMP score, is thus largely related to
the search of suitable transformations of the input feature
space. VAMP scores can not only provide comparisons
between di� erent discretizations of a trajectory but can also
operate directly on nondiscretized featurizations of the
trajectory. This allows, e.g., a comparison of the inherent
ability of di� erent features like dihedral angles or contact
probabilities to capture the selected modes (see refs27 and
28.).

2.4. MD Trajectories, Procedures, and Settings.
2.4.1. MD Trajectories and Preprocessing.The � rst system
investigated is the 58-residue bovine pancreatic trypsin
inhibitor (BPTI) simulated in its native state. We analyzed
here the 1.03 ms MD trajectory of Shaw et al.31 with a
sampling time of 25 ns. The sine and cosine of 271 dihedral
angles, which exclude only those� -angles where multiple
values map to the same conformation due to the presence of
symmetrical substituents (like� 2 in phenylalanine), were
extracted for further preprocessing. Despite this manual feature
selection, as shown in prior work,22 feature weights or
dimensionality reduction are still needed to yield an
informative feature space. Here, we use the latter (see below).

The second system we analyze is Beta3S, a 20-residue
peptide that folds into a three-stranded, antiparallel� -sheet as
its native state.32 The data are a concatenation of 10 MD
trajectories, each of 2� s length and recorded with a time
resolution of 0.2 ns. Here, we used the sine and cosine of all of
the available 103 dihedral angles.

For both systems, the extracted features were transformed
with tICA33,34 while also applying a published kinetic mapping
scheme.35 To reduce dimensionality, we retained only the� rst
10 tICA components for subsequent analysis. The autocorre-
lation lags used for BPTI and Beta3S were 500 and 4 ns,
respectively.

In the� nal part of the article, we examine a trajectory of the
apoform of the main protease of SARS-CoV-236 (PDB entry
6Y84).37 The total sampling length is 100� s, and snapshots
were saved every 1 ns. This enzyme is a homodimer with each
chain composed of 306 residues. We preselected 865 of the
available dihedral angles manually, which represent well over
50%. Without preselection, the density in the feature space is
not su� ciently informative even after an aggressive dimension-
ality reduction. We ignored the following classes of dihedral
angles: all dihedral angles in the 10 terminal residues on both
ends, all� -angles in charged residues except� 1, all � -angles,
the � 2-angles in Ser, Thr, and Cys, the� 2/3-angles in Tyr, and
lastly the� 2- and� 1-angles in Phe/Leu and Val, respectively.
The omissions for Phe, Leu, Val, and Tyr are due to symmetry.
As for the previous systems, we utilized the data set of the sine
and cosine of these angles for further preprocessing and
analyses.

2.4.2. Clustering Methods.The discrete state space
obtained by SbC is compared to major methods employed
in the current literature. In detail, we compare to k-means, k-
medoids, and a hierarchical clustering with Ward’s meth-
od.14,38 For simplicity, we will refer to the latter as“Ward”.

2.4.3. Markov State Models and VAMP Scores.Transition
matrices were inferred via maximum likelihood estimation
from the MD trajectories, and we did not impose detailed
balance. We chose MSM lag times for BPTI and Beta3S of 500
and 20 ns, respectively. The VAMP-2 scores account for the
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� rst 10 singular values, and they were computed also for the
nondiscretized input features, i.e., sine and cosine values of the
selected dihedral angles. All VAMP computations were cross-
validated with a 10- and 50-fold splitting of the discrete
trajectories for BPTI and Beta3S, respectively. Only the
averages of the test-set scores are shown in the results.
pyEMMA 2.539 was used for Markov state modeling and
calculations of related quantities.

2.4.4. Mean First Passage Times.Mean� rst passage times
(MFPTs) were evaluated between the two macrostates with
the largest statistical weights. In detail, for BPTI we used the
two biggest macrostates identi� ed by Shaw et al.31 For Beta3S,
the two macrostates were the three-stranded antiparallel� -
sheet con� guration (the folded state) and an ensemble of
states rich in� -helical content. The latter was de� ned as the set
of snapshots featuring a sum of at least� ve� - or � -assignments
according to DSSP across residues.40 The annotations thus
provide a set of labels from which we can estimate MFPTs
from the trajectories without further processing. This
estimation, also called“direct” estimation, was performed by
counting the periods of transitions between the two sets of
clusters and averaging over the� rst passage times
observed.41,42

Conversely, for a clustering result, the labels derived from
annotations are not necessarily homogeneous within a given
cluster. Thus, we require a strategy on how to assign
macrostate labels to the clusters of a given discrete trajectory.
To do so, for both of the two macrostates, we selected the
minimum set of clusters that contains at least 80% of the
macrostate snapshots. Here, minimum refers to the number of
clusters in the set. These two sets of clusters should largely
encompass the two macrostates, but they should not overlap
with other macrostates. MFPTs are expected to be insensitive
to the exclusion of some snapshots in a basin since there is a
large separation of time scales for relaxation within and
between states. In contrast, MFPTs can change dramatically
upon the accidental inclusion of snapshots from a di� erent
basin (e� ectively causing a kinetic shortcut). The MFPTs
between the two sets of clusters were calculated from the
MSMs by solving the related linear system of equations.32,43 In
addition, the two sets of clusters were used to rede� ne the
macrostate labels: unlabeled snapshots in selected clusters were
labeled, and labeled snapshots outside of the selected clusters
were unlabeled. On these modi� ed trajectories of labels, the
direct calculation mentioned above was performed as well.

3. RESULTS AND DISCUSSION
3.1. Application to n-Butane. We apply the SAPPHIRE

analysis to ann-butane trajectory of 105 snapshots with a
sampling time of 50 fs. The system has three degrees of
freedom, namely the dihedral angles associated with the three
carbon� carbon bonds. For the sake of PI construction, we
measure the geometric distance as the Euclidean distance in
this three-dimensional space. The system has access to 33 = 27
metastable states, representing all the possible combinations of
the three stable con� gurations of each angle (centered at 180°,
60°, and � 60°, respectively). InFigure 2, we show two
applications of the PI algorithm, with corresponding SAPPHIRE

plots, with values of leaves pooling (LP)25 equal to 0 and 10. A
substantial di� erence between the two pro� les is found in the
presence of the large and structurally inhomogeneous“state”
visible on the rightmost side of the left panel. The annotations
provided by the SAPPHIREplot clearly identify this region and,

among them, the“Edge” annotation is particularly revealing.
This annotation represents the length of the mST edge by
which a snapshot was added in the PI. The left panel ofFigure
2 shows that higher values of Edge are present in the
aforementioned PI region on the far right as well as on the
right fringe of each basin. The right fringe region corresponds
to the transition and peripheral regions of the metastable states
to the left. For high values of LP, these low-density regions are
redistributed homogeneously within their parent metastable
states (right panel ofFigure 2). Conversely, for LP = 0 (left
panel), points that are further away from their parent basin
thanca. 5 distance units are skipped and not added until the
very end. This is why the aforementioned state is not actually a
state but rather a collection of points from many di� erent low-
density regions.

The consequences of this reordering are apparent from the
kinetics of the MSM constructed based on the SbC results. In
Figure 3the � rst two implied time scales are shown both for

SbC with di� erent LP values and for other clustering methods
as a comparison. All the MSMs are built with 27 states (see the
caption ofFigure 3for details). As a reference, a gold standard
MSM is constructed using the binned phase space (12 bins for
each angle). AsFigure 3shows, the accurate resolution of time
scales is challenging even for a toy model if the number of
states is small. The discretization error is not fully overcome by
any of the tested methods, especially at shorter lag times. For
SbC, it is evident that an LP of about 10 is su� cient to
improve the kinetic� delity of resultant MSMs to approach the
same performance as that of the other methods. This is mostly
due to the elimination of the di� use low-density region that
was previously acting as a kinetic shortcut for many transitions
between states. A comparison of the two panels ofFigure 2
clearly hints at this e� ect because the lower height of the

Figure 3. Implied time scales (ITS) ofn-butane from SbC for
di� erent LP values as well as from other clustering methods. Values
computed on a binned phase space (12 bins per angle) are shown as a
reference. The other implied time scales are computed from MSMs
based on 27 clusters. For SbC, we analyzed the global kinetic
annotation with a moving average� lter. For each LP value, SbC was
repeated 50 times with random settings ofnPI andnT, both ranging
from 100 to 500. Results are shown for one partitioning selected at
random from the subset of results yielding exactly 27 states.
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barriers between states in the kinetic annotation re� ects these
kinetic shortcuts in the absence of LP. This is an illustrative
example of the bene� cial e� ect of LP on the performance of
SbC-derived MSMs. In light of this, we paid attention for the
other systems to set a LP value su� ciently large to adequately
capture the kinetics. As a practical note, we emphasize here
that the values for LP should be dimensionality-dependent
(the smaller, the larger).

3.2. Application to BPTI and Beta3S. We subsequently
applied the SAPPHIREmethodology to two simulation data sets
for proteins. The� rst is a very long MD (1.03 ms) simulation
of the folded state ensemble of bovine pancreatic trypsin
inhibitor (BPTI),31 a 58-residue protein stabilized by three
disul� de bridges. The second is a concatenation of 10 MD
simulations (20� s cumulative)32 of the reversible folding of
Beta3S, a 20-residue peptide adopting a three-stranded� -sheet
conformation along with several misfolds. We analyzed
snapshots saved every 25 and 0.1 ns for BPTI and Beta3S,
respectively. In both cases, the distance measure used for the
construction of the PI is the Euclidean distance in the 10-
dimensional space of those tICA components with the largest
autocorrelation values at lags of 500 and 4 ns for BPTI and
Beta3S, respectively. tICA was applied to data sets of sine and
cosine values of extracted dihedral angles; seeSection 2.4.1.
SAPPHIREplots of the two trajectories are shown inFigure 4
along with an example of the partitioning of the plot into
coarse clusters. The structural annotations were chosen to

highlight the main structural changes of the systems across the
di� erent states. For BPTI (panel a), we add a comparison to
the original kinetic clustering results derived by Shaw et al.31

along with the partitioning suggested in Xue et al.44

It is well-known that the slow dynamics of the simulated
folded state of BPTI are largely driven by the disul� de bridge
Cys14� Cys38 (Figure 4a, upper panel), which is su� cient to
distinguish most of the states identi� ed by SbC. The large
basin on the left splits further, which is not evident from the
disul� de bridge annotation. The shape of the kinetic trace
suggests that this state is not perfectly homogeneous; i.e., there
are comparatively fast interchanges between substates that
must be mapped to other degrees of freedom. The recognition
of such shallow maxima could be avoided by adjusting the peak
detection heuristic described inSection 2.2.2, but we did not
deem it necessary for the results presented here.

For Beta3S (Figure 4b), the states are characterized globally,
which we highlight using a comprehensive DSSP annotation.40

The most populated state is the native fold, i.e., the three-
stranded� -sheet con� guration (large basin on the left). The
dominant misfold is a mainly� -helical set of states (right
region, visible in green in terms of secondary structure
annotation). The remaining states are partially folded variants
of the native state, e.g., single� -hairpins. Just as we observed
for BPTI, the largest state is not fully homogeneous. As we
showed previously,45 the native basin has kinetically well-
de� ned substates di� ering in speci� c � -angles that are easily

Figure 4.SAPPHIREplot of MD trajectories for BPTI (a) and Beta3S (b). An example of SbC is shown in both� gures by the gray vertical lines. The
kinetic and temporal (Time) annotations are the red curve and the gray dots (bottom and center), respectively. The annotations stacked on top
di� er in the two panels. For BPTI, we show as a reference the clustering results obtained by Shaw et al.31 (red, blue, green, magenta, orange, and
yellow for states 0� 5) and Xue et al.44 (M1, blue; M2, yellow; M3, magenta; mC14, red; mC38, orange; other states, green). Above, the� ve dihedral
angles of the Cys14� Cys38 disul� de bridge are plotted (color bar on top). For Beta3S, we show instead the DSSP annotation per residue (color
legend on top). Due to limitations in plotting resolution, a subsampling by factors of 2 and 5 was applied along the PI axis for BPTI and Beta3S,
respectively.
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obscured.6 Here, the use of tICA and reduction to 10
dimensions ensure their discovery.

3.2.1. VAMP Analysis.We next compared our results from
SbC with other clustering methods by using the so-called
VAMP scores (seeSection 2.4.3) within the MSM framework.
These scores are expected to quantify how well the slow
dynamics of the system are approximated by the underlying
MSM. The MSM was built on the state space partitioning
delivered by the clustering methods. The type of algorithm and
the clustering resolution are known to be dominant
determinants of the accuracy of an MSM.16,46 First, we
evaluated the VAMP scores for each method on a set of 200
di� erent partitionings. For SbC, we tested random values for
three di� erent options, namely, a number of bins along the PI,
nPI, and Time,nT, ranging from 200 to 700, and the choice of
the smoothing� lter, either a moving average or a Savitzky�
Golay� lter with degree two. For BPTI, we obtained a number
of clusters ranging from 17 to 92, with a median value of 50.
Regarding Beta3S, we identi� ed 23� 132 states with a median
value equal to 67. As is evident fromFigure S2, the primary
determinant of the number of clusters discovered isnPI,
suggesting that SbC results with many clusters di� er from
those with few primarily in terms of clusters with low overall
sampling weight. The target numbers of clusters for the other
methods were also varied: we chose random values between 20
and 2000 for BPTI and between 20 and 5000 for Beta3S (for
k-medoids only between 20 and 1500 for computational

reasons in both systems). We adopted MSM lag times of 500
and 20 ns for BPTI and Beta3S, respectively.

In Figure 5a, we show the VAMP scores computed across
the aforementioned settings. We also display, as a reference,
the VAMP scores computed on the original data set of sine/
cosine values of dihedral angles (no tICA and no
dimensionality reduction). With little di� erences among the
various methods, SbC performs slightly better on both systems.
Taking into account also results from Husic and Pande,38 we
analyzed the VAMP scores within the low range of clusters
found by SbC. For each SbC partitioning, we set the
corresponding number of clusters as the target for the other
methods, reclustered the data, and recomputed the VAMP
scores. Results inFigure 5b partially alter the trends between
methods, revealing, as in ref38, that a low number of states is
favored by VAMP. Nonetheless, SbC remains the best
performing method along with Ward for BPTI, and it yields
values within 95% of the top scores for Beta3S.

3.2.2. Analysis of Mean First Passage Times.The VAMP
scores account cumulatively for the� rst slowest modes of the
system providing, therefore, little or no speci� c information
about individual processes, which might be of particular
interest. In our case, for BPTI, we wanted to focus on the
transitions between the two largest regions of the native state,
namely, the red and blue states of the Shaw et al. classi� cation
in Figure 4a. Regarding Beta3S, we investigated the transitions
between the native fold (the three-stranded� -sheet) and the

Figure 5.VAMP-2 scores of BPTI and Beta3s for di� erent clustering methods and settings. The� rst 10 singular components are used for the
calculation. The dots are based on mean test scores from a 10- and 50-fold cross validation for BPTI and Beta3S, respectively. For each method,
dots are splayed out horizontally to improve readability, but this horizontal (sub)axis has no meaning. (a) VAMP-2 scores for four methods when
using variable clustering settings. Clustering parameters were sampled 200 times for each method (seeSection 3.2.1for details). Bars and whiskers
represent average and standard deviation of mean test scores across the di� erent clustering settings. The dotted line and the gray stripe represent
VAMP scores obtained directly from the original features (sine and cosine of dihedrals). They correspond to the mean and standard error interval,
respectively. (b) Relative VAMP-2 scores for matched numbers of clusters. Ward, k-means, and k-medoids were performed with the same number
of clusters obtained by SbC for each of the 200 SbC samples. The dots represent the fractions of the highest score among the four methods. Tukey-
style box plots are plotted underneath. Note that Ward is a stable algorithm that will always give the same results for the same number of clusters.
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region high in� -helix content (seeFigure 4b). Methodological
details on MFPT computations can be found inSection 2.4.4.

We calculated MFPTs between the respective sets of
reference states for both systems. We computed them not
only from MSMs but also directly from the discrete trajectories
where the state labels were assigned based on the selected sets
of clusters (seeSection 2.4.4). In the latter case, MFPTs can be
estimated with maximal time resolution, i.e., with a lag equal to
the sampling step. Because both estimates rely on the
clustering, they are subject to the discretization errors resulting
from the partitioning of phase space. Generally speaking,
discretization errors lead to an underestimation of the time
scales,46 and their magnitude can be reduced by adopting a
� ner partitioning, especially across the transition regions.16 On
the other hand, this negative bias can be compensated by using
higher values for the MSM lag time since rapid transitions
between nearby states will be neglected.42

In Figure 6, we show MFPT values from SbC and other
clustering methods for both types of computation, viz., through
MSMs (gray scale) and from the trajectory of cluster indices
(direct estimation in red). We analyzed the same set of
clusterings used inFigure 5b, that is, with the number of states
paired to SbC results. As an additional point of reference, the
MFPTs estimated directly from the original set of labels are
included as well (dashed horizontal lines). These numbers are
not based on clustering and are a function of only the time
sequences of the labels A and B assigned to the snapshots in
the two selected macrostates. For BPTI (Figure 6a), regardless
of the computation type, Ward exhibits generally smaller
variances, proving to be robust with respect to the number of
clusters. Ward is a strictly hierarchical agglomeration scheme,
which means that the di� erence in two clusterings of
N vs N+ 1 clusters is that an additional pair of theN + 1

clusters has been merged, the others all being identical. This
guaranteed mutual similarity is not present in the other
techniques. For SbC, this is true not only because of the use of
the sST but primarily because of the ability to choosenPI and
nT; seeFigure S2.

For all methods, the direct estimates from the clustered
trajectories are generally consistent with the values computed
directly on the labeled trajectory (dashed lines). This is valid in
particular for SbC where median lines fall within the standard
error of the reference values in both directions.

As expected, the MSM estimates increase steadily with
higher lag times overcoming eventually, on average, the direct
estimates. Already at lag times equal to 125 ns, for all the
methods except Ward, the lower tails observed on the direct
estimates are reduced, hinting at the presence of very short
transitions and, thus, at problems with the underlying
discretization. As expected, the data points corresponding to
these lower tails largely correspond to small numbers of
clusters (� 22 upon visual inspection). Focusing on the same
lag time used in VAMP scoring,� = 500 ns, the overlap
between the MSM values and either of the direct estimates is
weak for almost all methods and both directions. However, this
is, as alluded to above, expected: direct estimates are likely to
be underestimates because the data are inferred from
trajectories of� nite length, and, more importantly, fast
transitions, which might be indicative of“shortcuts” arising
from utilizing discrete labels,47 are� ltered by choosing long lag
times.

In Figure 6b, we show the MFPT estimates for Beta3S. They
refer to transitions between the three-stranded� -sheet and the
� -helical state. All the MFPTs estimates have smaller relative
errors than those of BPTI. This is likely due to the higher

Figure 6.MFPTs of BPTI (a) and Beta3S (b) between the selected macrostates computed in three di� erent ways and for both directions (top and
bottom). For BPTI, A and B indicate, respectively, the red and blue state of the“Shaw” annotation inFigure 4a. For Beta3S, A and B represent,
respectively, the three-stranded� -sheet macrostate and the� -helix-rich region (seeFigure 4b andSection 2.4.4for details). The gray, Tukey-style
box plots summarize the results of MSM-based MFPT calculations across the same set of discrete trajectories analyzed inFigure 5b, i.e., 200
trajectories per method where the number of clusters was matched to the particular value found by SbC. The red box plots summarize MSM-free
MFPTs obtained by reassigning labels A and B based on the selected clusters. Finally, the dashed lines indicate the MFPTs estimated on the
original sets of labels, and the shaded regions indicate the corresponding standard error computed over the set of� rst passage times.
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number of transitions between the two macrostates under
investigation (compare Time annotations inFigure 4).

While the shortest lag times evaluated here match the direct
estimates best, there are clear indications that this reference is
of limited use for Beta3S. First, the di� erent types of direct
estimates do not match consistently.Figure 6relies on low
numbers of clusters, but the free energy landscape of Beta3S is
rich in many smaller yet mutually similar states (compare
Figures 4a and b). Thus, a� ner clustering is necessary in order
to capture correctly the macrostate boundaries derived from

the labels, in particular for the native� -sheet conformation of
Beta3S. This is demonstrated inFigure S3where the two types
of MFPT estimates reconcile when using a su� ciently high
number of clusters. Second, and this is the major concern, the
MFPTs are very similar for both directions while the
equilibrium state weights are not: the latter display a ratio of
ca. 4; seeFigure 4b andFigure S4. The MSM-based MFPTs
reproduce this asymmetry much better at all lag times. The
primary reason for the failure of direct estimates is the same
one discussed for BPTI, i.e., shortcuts introduced by using

Figure 7.SAPPHIREplot created from MD simulations36 of theapoform of 3CLpro (PDB entry 6Y84).37 We isolated from the trajectories the two
chains composing the homodimer and concatenated them in time. The 10 PCs with largest variance when ignoring the� rst one were calculated
from a data set of 865 dihedral angles (sine and cosine) and retained for PI analysis. We adopted an LP value of 15. The dihedral angles o� ering the
highest loadings to these 10 PCs are shown (structural annotation with color bar on top). The“Mix” annotation is the normalized number of
interchanges between the two chains (“Chain” annotation below) in a centered PI window of 500 snapshots. The results of SbC are shown as
vertical lines. In total, 54 clusters are identi� ed when using 300 and 200 as the numbers of bins along the PI and Time axes, respectively (see
Section 2.2). The “Macro” annotation indicates the eight macrostates identi� ed by applying the PCCA+ algorithm to the SbC result using a lag
time of 100 ns (seeFigure 8for visualizations of snapshots representing these states). For reasons of plotting resolution, a regular subsampling by a
factor of 10 was applied along the PI axis.
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labels that fail to resolve kinetically distinct states. For Beta3S,
this is a well-known problem when using secondary structure
annotations to identify states.32,47 Notably, it is not possible to
infer stringently fromFigure 6which of the tested lag times is
most appropriate. However, the data suggest that shorter lag
times are better for both systems. Tests for Markovianity do
not provide unequivocal evidence for the use of either the
shortest or longest lag time evaluated (Figures S5 and S6). In
recent work, we observed similarly that indirect tests of

Markovianity tend to suggest lag times that are too large when
trying to match steady state probabilities with a ground truth.48

3.3. Analysis of SARS-CoV-2 Main Protease. In the� nal
part of this work, we examine a publicly available MD
trajectory of the unliganded main protease of SARS-CoV-236

(PDB entry 6Y84).37 This system serves here to illustrate the
entire SbC work� ow to highlight the ease with which a very
large and complicated data set can be mined to extract results
ready for human comprehension. The total sampling length
and time resolution of the data are 100� s and 1 ns,

Figure 8.Kinetic network of 3CLpro. (a) We show the six macrostates annotated inFigure 7that are shared by both chains. The colors are the
same. The relative weights of the macrostates and the MFPTs between them are added as labels to the vertices and edges, respectively. These data
are obtained for both chains separately (color code at the bottom of (a)). MFPTs are shown for both directions in units of microseconds: the� rst
value refers to the transition from left to right, the second to the opposite direction. Edges corresponding to less than 25 counts are omitted as is a
transition between the brown and red states (chain 2 only, MFPTs 0.7/23.4). The MFPTs were inferred from a nonreversible MSM with a lag time
of 100 ns. The edge widths are proportional to the number of transitions between the macrostates. (b) The snapshots closest to the centroid of
each of the eight macrostates in terms of the metric used inFigure 7were identi� ed and are shown using the same color scheme. Note that the
yellow and light pink states are not part of the network in (a). Chains were aligned using C� atoms. Protein backbone conformations are depicted
as tubes. Heavy atoms in side chains of speci� c residues appearing inFigure 7are shown but only for the red macrostate. Residue stretches or
individual side chains are annotated by legends and either arrows or boxes. The images on the left and right di� er by a rotation of 180° around the
vertical axis. Some side chains produce variance that does not appear to be structurally important like the contact pair Met17/Asn28.
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respectively. This enzyme, also called Mpro or 3CLpro, is a
homodimer with the two chains oriented perpendicular to each
other (seeFigure S7). Each chain is composed of 306 residues
grouped into three domains.49

For the SAPPHIREpipeline, the dynamics of the two chains
were treated separately by concatenating the two subsystem
trajectories. The resultant data set comprised 865 dihedral
angles extracted from the central 286 of the 306 residues per
chain arranged into 2× 105 snapshots. The data set was
preprocessed by applying a principal component analysis to the
sine and cosine values of the dihedrals and retaining the 10
principal components (PCs) with largest variance but skipping
the� rst one. The� rst component is omitted since it primarily
separates the two chains by featuring high loadings for dihedral
angles that rarely move but are consistently di� erent between
chains 1 and 2. The distance metric used for constructing the
PI was the Euclidean distance in this 10-dimensional space.
Results obtained with other preprocessing pipelines are shown
in theSupporting Information.

In Figures 7and8, we present the results of our analysis; the
salient aspects are summarized as follows. First, the SAPPHIRE

analysis indicates that sampling has not reached convergence.
As a symmetric homodimer, we expect both chains to access
the same conformational states. However, there are phase
space regions visited only by one of the two, e.g., the rightmost
PI area inFigure 7. The sampling overlap between chains
decreases dramatically if the� rst PC is included (seeFigure
S8) or if instead we use the 10 tICA modes with largest
autocorrelation values (again, skipping the� rst one, seeFigure
S9). Second, the relatively coarse view o� ered by the 10 PCs
allows SbC to identify 44 states visited by both chains and 10
states sampled by only one of the two chains (4 and 6 for
chains 1 and 2, respectively). The latter are de� ned as states
that have more than 95% of the cluster weight coming from
only one chain. The major di� erences between states at the
backbone dihedral angle level are localized in the 43� 53
stretch of a loop that is part of the S2 pocket.49,50 The intrinsic
� exibility of this loop might play a role in substrate binding
and/or product release. In addition, there is a set of side chains
in direct contact with this loop (residues 82, 87, 188, 190, and
192), which contribute strongly to the selected PCs. The
remaining residues that do so are more isolated, e.g., Met17
and Asn28, which form a tertiary contact; seeFigure 8b. Third,
we summarize these 54 states by lumping them via PCCA+
(“Macro” annotation inFigure 7) into eight states. The six
states with� nite sampling weights in both chains were isolated
and used to derive the simpli� ed kinetic network shown in
Figure 8. The network, which uses a lag time of 100 ns and is
split by a chain, reveals that the chains share several transitions
with often similar rates (MFPTs in the low-to-sub micro-
second regime). This holds as long as the transition is between
well-sampled states in the respective chain. Importantly, setting
the caveats about the limited amount of sampling aside, the
resultant kinetic network is human-comprehensible and could
be integrated into a larger kinetic model of the active cycle of
this protease. In turn, kinetic models of this type are needed to
make predictions about the e� cacy of interfering with its
function through pharmaceutical or other strategies.

4. CONCLUSION AND OUTLOOK
We have introduced a method for time-series clustering that
derives from an unsupervised data-mining technique developed
to e� ciently analyze high-dimensional data sets such as those

generated by MD simulations. The construction of the
SAPPHIREplot,20,21,25 which is inherent to SbC, allows for an
e� ective visual inspection of the putative states and pathways
of a system at maximal (snapshot) resolution. The clustering is
obtained from partitioning along the PI using both kinetic and
temporal annotations (Figure 1). It is an advantage that the
nature of the identi� ed clusters is directly apparent from the
SAPPHIREplot provided that suitable annotations are used (see,
for example,Figure 4, in particular for Beta3S). While the
applications here are on conformational equilibria, SAPPHIRE

plots and thus SbC can be used equally well to characterize
other stochastic systems such as binding equilibria22,23 or
neuronal networks.24

Even though the sampling density in a selected feature space,
often explored through spanning trees, is the foundation for
the identi� cation of metastable and transition states,6� 8,51 a
direct inclusion of temporal information has proven bene� cial.
Temporal information can be incorporated into clustering
techniques in di� erent ways: directly31 or by the inclusion of
time-based feature weights either directly45,47 or through
tICA.33,34 The latter category has been complemented by the
introduction of purely kinetic modeling techniques that rely,
for example, on basis sets26 and provide a variational principle
for the systematic evaluation of MSMs. The clustering
algorithm is one of the hyperparameters of a traditional
MSM, and it has been argued that methods optimizing
variance- or mean-based criteria, such as Ward and k-means,
are best-suited to maintain kinetic� delity in the resultant
MSMs.38

In this work, we showed that a SAPPHIRE plot with its
standard kinetic and temporal annotations is su� cient to
derive a clustering that yields MSMs whose kinetic perform-
ance from tICA-transformed data is competitive relative to the
application of Ward or k-medoids. We readily acknowledge
that this conclusion is based on matching the numbers of
clusters; seeFigures 5b and6. It is a caveat that SbC has only
indirect control over the number of states it produces, in
particular through the numbers of bins on the PI and time
axes. We demonstrated that the pooling of spanning tree leaves
(LP), which is a property of the SAPPHIREplot itself, can be
bene� cial for deriving MSMs because it acts as an e� ective
lumping technique for low-density fringe regions surrounding
states (Figures 2and3). While an automatic selection of the
SbC (hyper)parameters might be of interest, the heuristic is in
part speci� c to the goal of our analysis. The simplest and most
general rule is that the bin sizes need to be set according to the
minimum sampling weights and residence times of the states to
be identi� ed. For LP, our general recommendation is to
choose the smallest possible value that avoids� nding a di� use
set of mutually unrelated points from di� erent regions of low
sampling density on the right of the SAPPHIREplot. However,
this might hinder the detection of actual low-density states,
and a smaller or zero value may o� er additional insights in this
scenario.

There are several bene� ts of SbC. First, it is a clustering
technique that can produce clusters of arbitrary size and shape
in the selected feature space. Second, it is a scalable technique;
i.e., computational cost increases nearly linearly with data set
size. This is because the computational time added by SbC to
the SAPPHIREalgorithm is insensitive to data set size (seeFigure
S10) whereas the computation of the PI based on a sST scales
as�6 N N( log ) with the number of snapshots and linearly with
the number of features in the data set.20 Third, and this is
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probably the main bene� t of SbC, it is immediately possible to
both visualize the states and diagnose the result. For example,
from the left panel ofFigure 2, it is obvious that there is an ill-
de� ned state that serves as a kinetic hub, which here is an
arti� cial shortcut. Similarly, fromFigure 7, it is immediately
clear that any kinetic predictions will be noisy because there
are few transitions between states. For a toy model of
su� ciently low dimensionality, SbC is expected to� nd a
number of states that is more or less the same as the true
number of metastable states, seeFigure 2. For complex
systems, the true number of states is generally unknown.
Coarse-grained models might aim to achieve human
comprehension of every state of the system, which usually
limits the analysis to 5� 10 macrostates.12,13,52 SbC produces
more clusters, but their structural di� erences are almost always
clear; seeFigures 4and7. Forcefully reducing the number of
inherent states implies either lumping53� 55 or pruning.56,57

This can happen either in postprocessing or directly at the level
of feature selection and transformation. While the use of time-
based information changes the results for Beta3S only slightly,
those for BPTI are dramatically di� erent,45 which we� nd here
in similar form for 3CLpro; compareFigure 7to Figure S9. The
choice and processing of features are the most critical steps in
understanding MD data, and the impact of these steps on the
inferences drawn remains the biggest caveat in the� eld.28,45
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