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Persistent activity has commonly been considered to be a hallmark of working memory (WM). Recent evidence indicates that neuronal
discharges in the medial temporal lobe (MTL) are compatible with WM neural patterns observed in cortical areas. However, the
characterization of this activity rarely consists of measurements other than firing rates of single neurons. Moreover, a varied repertoire
of firing dynamics has been reported in the MTL regions, which motivate the more detailed examination of the relationships between
WM processes and discharge patterns undertaken here. Specifically, we investigate, at different resolution levels, firing irregularities
in electrode recordings from the hippocampus, amygdala, and the entorhinal cortex of epileptic patients during a WM task. We show
that some types of (ir)regularities predict response times of the patients depending on the trial periods under consideration. Prominent
burst activity at the population level is observed in the amygdala and entorhinal cortex during memory retrieval. In general, regular
and bursty neurons contribute to the decoding of the memory load, yet they display important differences across the three anatomical
areas. Our results suggest that nonrandom (non-Poisson) patterns are relevant for WM, which calls for the development and use of
statistics complementary to mere spike counts.
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Introduction
A great deal of work has been dedicated over the last 50 years to
the identification and characterization of neural activity observed
during working memory (WM) tasks (Fuster and Alexander 1971;
Wang 2021). The ability to maintain information in memory for a
limited period of time has been traditionally explained in terms
of biological mechanism by the presence of persistent spiking
activity during the maintenance, or delay, period of the task. The
term ‘persistent’ has been used in association with the elevated
spike count of a restricted subset of neurons (Constantinidis
et al. 2018; Leavitt et al. 2017; Wang 2021) as well as to describe
low-dimensional neural trajectories residing in an attractor state
(Kamiński et al. 2017; Masse et al. 2020). The brain areas typically
associated to WM are the prefrontal, parietal, and sensory cortex
(Christophel et al. 2017). However, recently, also the medial tempo-
ral lobe (MTL) has attracted attention following the identification
of signatures of persistent activity (Bausch et al. 2021; Kamiński
et al. 2020; Kornblith et al. 2017) (see also earlier work in Axmacher
et al. (2007)).

Despite the multiple reports, a precise characterization of the
persistent activity in terms of firing dynamics is missing. In
addition, the properties of this activity that allow for an efficient
coding of the memory variables are not fully understood. Here,
we ask the question if bursty neurons and/or population bursts
contribute to the decoding of WM signals. To answer this question,
we investigate firing irregularities in the MTL during a modified
Sternberg WM task. We utilize a data set of recordings from a
region comprising the hippocampus, amygdala, and the entorhi-
nal cortex of epileptic patients (available online Boran et al. 2019;
2020). In the original work (Boran et al. 2019), the authors hypoth-
esized the involvement of the hippocampus in the WM process,

related in particular to the memory load, and they used sets of 4,
6, or 8 letters written on a screen to be memorized. These authors
found two sets of neurons with significantly enhanced activity
during the delay phase and the memory retrieval phase, which
were termed maintenance and probe neurons, respectively. An
attractor-driven dynamics was postulated for the maintenance of
WM information at the population level.

Temporally irregular neural activity was previously observed in
the prefrontal cortex during the delay period of a delayed response
task (Compte et al. 2003). Furthermore, large deviations in inter-
spike interval (ISI) statistics from a Poisson process were unveiled
across the cortex with differential patterns from sensory-motor
to higher cortical regions (Maimon and Assad 2009). In the human
MTL, long-range temporal correlations among the ISIs were
observed in both amygdala and hippocampus in spontaneous
activity (Bhattacharya et al. 2005). More recently, a wealth of
distinct irregular patterns associated with temporal coding during
different memory phases was identified in the hippocampus and
entorhinal cortex (Umbach et al. 2020).

In contrast to the original analysis, we here do not focus exclu-
sively on the firing rates of single neurons but rather investigate
the discharge patterns in terms of burstiness, i.e. irregularity of
the spike sequences. In particular, we analyze the spike trains
by adopting, predominantly, a local variation metric (Shinomoto
et al. 2003; 2009) for the quantification of irregularities, which
is independent from raw firing rates as we demonstrate below.
Our analysis is structured as follows: first, we validate the local
variation metric and investigate if it can be reliably related to trial
and behavioural variables; second, we examine the burst activity
at the population level and assess how it reports on memory
processes and on the coordination of single units; a Fano factor
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analysis then helps clarify some of the previous results. Even-
tually, we study how the population decoding of trial variables
depends on the firing behaviour of the underlying units. Our
analysis sheds light on intrinsic differences between the dynamics
of the 3 anatomical areas. It also reveals the relevance of non-
random (non-Poisson) spike trains for memory maintenance and
behavioural performance, i.e. response times.

Materials and methods
Experimental design and recordings
Detailed information about subjects, task, recording setup, and
spike sorting procedure can be found in Boran et al. (2020). All
subjects provided written informed consent for the study. In this
section, we recapitulate the aspects that strictly concern our
analysis and describe the data filtering procedure. Subjects are
asked to perform a modified Sternberg task, which comprises
epochs of encoding, maintenance, and recall of memory items.
In detail, after an initial period of fixating a blank screen (1 s),
a stimulus is presented. This consists of a set of central 4, 6,
or 8 letters, possibly surrounded by ‘X’s on both sides such that
the number of characters is always equal to 8. The letter ‘X’
is never part of the set to be memorized. The encoding period
lasts for 2 s and is followed by a maintenance, or delay, period
of 3 s where a blank screen is shown again. A probe letter is
eventually presented and the subjects are instructed to answer
rapidly whether the letter does or does not belong to the stimulus
set (IN or OUT button press). The set sizes are randomly selected,
except when the subject response is wrong. In that case, the set
size of the subsequent trial is always chosen as 4 in order to keep
the patient motivated. A session is composed of 50 trials and lasts
approximately 10 min.

Depth electrodes were implanted in the MTL of epileptic
patients for potential surgical resection of their seizure foci.
Intracranial electroencephalography recordings were performed
into hippocampus, amygdala, and the entorhinal cortex with
depth electrodes combining macro- and microcontacts (1.3-mm
diameter, 8 macrocontacts of 1.6-mm length, spacing between
contact centers 5mm, 9 microcontacts protruding radially 4mm
from its tip, ADTech

®
). All of the trial recordings have a fixed

length of 8 s and they all start with the fixation period (1 s).
This implies that when response times are longer than 2 s a
part of the neural recordings preceding the response is missing.
In many cases, the trials affected are discarded; this is properly
noted where required. Trials containing artifacts were also not
considered throughout the analysis (Boran et al. 2019).

Spike sorting has been performed through the Combinato
package (Niediek et al. 2016), and its results are provided with
the data set. In our analysis, only neurons with an average firing
rate >1 Hz across trials were kept. Also, to control for potential
cross-talk between electrodes, Jaccard similarity was computed
between binarized spike trains (1-ms bin) of simultaneously
recorded units. All of the session trials were concatenated for
the calculation. Values of Jaccard similarity higher than 0.3
were considered suspicious, and sequentially selected units were
discarded until all values fell below this threshold. In detail, we
identified the unit that was contributing to the highest number
of Jaccard values >0.3 and removed it. If 2 units were equally
contributing, we discarded the one with lower firing rate. The
procedure was repeated until the threshold criterion was fulfilled
globally. In the end, 7 out of 26 sessions were affected with a
total number of discarded units equal to 35 (out of 992 previously
selected).

It is known that bursting activity can compromise the iden-
tification of single units during spike sorting (Quirk and Wilson
1999). This is mostly due to the distortion of the spike waveform
following sustained firing, and sorting of the spike shapes can be
further complicated when multiple bursty neurons are recorded
from the same electrode (Einevoll et al. 2012; Lewicki 1998). As a
consequence, the distribution of units with respect to their bursti-
ness values (see below) might depend on the chosen spike sorting
technique (Sukiban et al. 2019). The original authors evaluated
quality metrics and manually curated the putative clusters (Boran
et al. 2020). However, it is reasonable to expect some variability
with respect to our results deriving solely from the chosen sorting
procedure.

Firing irregularities
LvR metric
Spiking irregularities were investigated by examining the
sequence of the ISIs. We adopted an enhanced local variation
measure (LvR) to quantify the firing (ir)regularities of the units
during single trials (Shinomoto et al. 2003; 2009). Unlike other
common metrics, such as the coefficient of variation, LvR
accounts for fluctuations in firing rates along the time series
and, also, corrects for the refractory period following a spike. It is
computed as

LvR = 3
n − 1

n−1∑
i=1

(
1 − 4IiIi+1

(Ii + Ii+1)
2

) (
1 + 4R

Ii + Ii+1

)
, (1)

where I indicates the ISI, n the total number of ISIs, and R the
refractoriness constant. This latter parameter is set to 5 ms (as
in the original work of Shinomoto et al. (2003)) for the single-unit
calculations. For the combination of two or more units, the refrac-
toriness correction was not considered (R = 0). LvR values were
computed for (windows of) spike sequences containing at least 5
spikes. When this condition was not met, the corresponding data
points were simply discarded unless noted otherwise.

Change points
We identified sharp variations in the single-unit firing rates dur-
ing each trial through an adaptive CP procedure (Gallistel et al.
2004; Jezzini et al. 2013). The method uses the empirical cumula-
tive count of spikes and compares it with the expected one, which,
in our case, is the one deriving from a perfectly regular firing
with a matched number of spikes (i.e. a uniform distribution). The
earliest time point where the two distributions differ maximally is
considered and identified as a CP contingent upon the result of a
binomial test between the spike counts before and after that point
(see Gallistel et al. (2004) for more details). After a CP is evaluated
to be significant, the algorithm is applied again to the remaining
data following the CP. The adaptive element of the procedure rests
in reducing progressively the P-value confidence threshold until
no change points (CPs) are identified during the fixation period
(Jezzini et al. 2013). This is done in practice by increasing the logit
= log 1−P

P in steps of 0.2 from 1.3 to 5.9 (corresponding to a range
P � 0.05 − 10−6).

Time-resolved analysis of irregularities and trial
variables
To investigate the relation between LvR and response times, we
calculated the Pearson correlations between these 2 quantities
using data from the whole pool of sessions and trials (Fig. 4).
Differently, in order to assess whether there are significant regions
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in the LvR spectrum tuned to a particular trial class, i.e. set size or
response correctness (Fig. S3), we devised the following test. The
LvR values are first collected across all of the sessions and trials
as above and transformed into ranks following an ascending order
(1 was assigned to the lowest LvR, 2 to the second-lowest, and
so on). This was done separately for single as well as combined
(2 and 3 units, see Fig. 3a) LvR values. For the combined case,
we subsampled only a fraction of points (see below). The cumu-
lative distributions of the rank-transformed LvR values are then
computed for the single classes, e.g. correct and wrong responses.
The rank transformation makes the (following) statistic invariant
to the underlying distributions (see Fig. S2a) and guarantees a
fair comparison between the different combinations. We took
the sum of the point-wise differences between the 2 curves as
the test statistic for quantifying the dissimilarity between the 2
distributions. For the set size grouping variable, the difference was
between high (6 and 8) and low workloads (4); for the response
correctness, we considered the difference between the wrong and
correct subsets. For this latter grouping variable, we considered
only sessions with at least 5 wrong trials. The statistic obtained is
equal to the total area between the 2 curves but respecting the
sign of the difference. It differs from the more known Wasser-
stein, or earth-mover’s, distance as there the absolute difference
between the curves is considered.

Subsampling of combinations and statistical testing
Next, we describe the procedures for subsampling the data set and
calculating the chance level distribution which are conceptually
the same also for both of the analyses introduced before. In
order to maintain across the different unit combinations (single,
2, or 3) the same number of points used for calculating the test
statistic (the Pearson correlation or the dissimilarity between the
class distributions), we subsampled, within each session, from the
combined LvR values (2 and 3) a number of points equal to the
ones in the single-unit calculation. From this, the test statistic is
computed, and the whole process is repeated 100 times. Within
each repetition (and also for the single-unit LvR), we generated a
null distribution by permuting 1,000 times the trial variables, i.e.
response times, set sizes, or correct/wrong responses. This permu-
tation was performed preserving both the trial structure and the
subject identity, that is, units that were simultaneously recorded
were assigned the same trial variable, drawn from the ones avail-
able for that specific subject. By comparing the true statistic
value to the null distribution, a P-value could be extracted. The
summary P-value for the combined LvR is given by the median of
the 100 extracted ones.

Population bursts
A population burst is defined as a period of sustained collective
activity where the population firing rate exceeds a certain thresh-
old for at least 100 ms. Our procedure closely resembles the one
in Vaz et al. (2020). Instantaneous firing rates were extracted by
convolving the spike rasters of each unit with a Gaussian kernel
of bandwidth equal to 25 ms and subsampling with a 10-ms step.
These time series were used for calculating both the population
firing rate, as the average value across the units, and the thresh-
old, which is described in the following. In turn, (i) single-unit
firing rates were averaged over the whole trial window; (ii) these
resulting values were then averaged across units within each
trial; and (iii) the mean and standard deviation across the trials
were extracted. These last 2 values eventually served to define
the threshold as mean + 3 · s.d. If two consecutive population
bursts were closer than 150 ms (tail to head), the one with lower

firing rate was discarded. We assigned the single burst events to a
specific trial period if at least 80% of the burst window was located
within its boundaries. When dealing with the probe period, the
right boundary was always defined by the response time.

Below, we refer to some of the analyses presented in the Supple-
mentary Information. The unit composition of a single population
burst, w, was defined as a vector composed by the averages of the
single-unit firing rates within the burst window. The smoothed
firing rates (25-ms Gaussian kernel) were again employed. The
sparsity measure quantifies the prevalence of a group of units in
the population burst activity. It is computed as follows:

1 −
√

n − ∑
i|ŵi|√

n − 1
, (2)

where n is equal to the number of units (the length of w), and ŵ is
the unit composition scaled to unit length. Sparsity values close
to zero indicate the net prevalence of few units to the population
burst activity, whereas higher values suggest a more balanced
contribution of all of the units. The LvR of the population burst
events was calculated as the weighted mean of the single-unit
LvR using the unit composition elements w as weights.

Fano factor
Mean-matched Fano factors (FF) were calculated to investigate
the trial variability of the spiking responses (Churchland et al.
2010). In contrast to the raw FF calculation, that is, the simple
ratio between variance and mean of the spike counts, the mean-
matched procedure controls for local variations in firing rates
that can trivially affect the FF calculation. For example, similar to
LvR, the statistic should account for the fact that refractoriness
periods might reduce the spiking variability in periods of high
firing rates, and as a consequence, also across trials, leading to
an artificial decrease. The calculation starts by extracting mean
and variance of the spike counts for each combination of units
and conditions (here, the 3 set sizes). We adopted sliding windows
of 500 ms with a time step of 50 ms. The total numbers of points/-
combinations were 1254, 699, and 919 for hippocampus, amyg-
dala, and entorhinal cortex, respectively. The greatest common
distribution of mean spike counts across all the time windows
was extracted (in practice, a histogram with bin size of 0.5 was
employed). For each window, we discarded points randomly such
that the common distribution was matched and, eventually, FF
was determined as the slope of the line regressing variance over
the mean of the remaining points. For the linear regression, the
intercept was constrained to zero, and each point was weighted
by the (inverse of 0.01 plus) standard error of the variance. Due
to the multiple mean-matching possibilities, the procedure was
repeated 50 times and the average FF with 95% confidence inter-
vals (CIs) was reported. When comparing the set sizes directly
(4 vs 6–8), we ensured that the same number of trials in each
condition was utilized for computing the mean and variance
of the spike counts. This was achieved by undersampling the
condition with the highest number of trials. A different undersam-
pling was performed for each combination of neuron and time
step.

Decoding analysis
Decoding analysis was performed on the neuronal pseudo-
population obtained by collecting units across all of the sessions
and patients. Spike counts were computed per unit in nonover-
lapping windows of 250 ms within the 3-s maintenance period,
thus yielding 12 points per trial. A z score normalization was then
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applied to each of the neuronal series without any smoothing.
The order and number of each grouping variable, e.g. set size,
differ between each session, thus preventing an alignment of the
trials of different sessions based solely on temporal succession.
To this end, we describe in the following a bootstrap procedure
adopted to calculate the decoding accuracies (Meyers et al. 2008).
First, in each session, we identified the minimum between the
number of trials belonging to each of the classes. If this number
was lower than 5, that session was discarded. The minimum
of these values across all of the sessions, nT, was taken as the
number of trials to be sampled per class within each session.
Following this criterion, the classes’ instances were thus forcefully
balanced. Second, after sampling the trials, the resulting data
sets from each session were concatenated together creating the
final pseudo-population activity matrix. The number of data
points is equal to 12 × 2 × nT given that we perform only binary
classifications (nT = 9, set sizes 4 and 6–8; nT = 6, correct and
wrong responses). At last, we train and test a linear support
vector machine (SVM) following a 10-fold cross-validation scheme
(SVC in Python package scikit-learn). The mean accuracy score
across the 10 test sets was computed. The entire procedure
was repeated 50 times, sampling thus different alignment
configurations between trials of different sessions. To generate
a null distribution of accuracy scores, we shuffled the class
labels 500 times within each bootstrap cycle and repeated the
procedure described above. One-tailed P-values were extracted
and the median of these 50 quantities was taken as the summary
value.

The total numbers of units for hippocampus, amygdala, and
entorhinal cortex utilized when discriminating the set size were
418, 233, and 308, respectively; when classifying the response
correctness, the numbers of units were correspondingly 103, 66,
and 58. A large part of the decoding analysis is performed on
subsets of these units defined by the LvR values. The neuronal
pseudo-population is split into n-tiles according to the mean
LvR value computed over the trials composing each particular
bootstrap cycle. This implies that the same unit in distinct cycles
can be assigned to different n-tiles.

To quantify the variation in accuracy when removing an
n-tile with respect to the full population, we computed within
each bootstrap cycle a d-prime or sensitivity index as follows:

d′ = μFull − μRed√
0.5 · (

σ 2
Full + σ 2

Red

) , (3)

where the subscripts indicate the full or the reduced neuronal
population, and μ and σ 2 are, respectively, the mean and variance
of the accuracy scores across the 10 test sets. We ensured that
the classification procedures of the 2 populations were performed
on the same sample of trials. Eventually, we computed mean and
SEM of the d′ indexes and performed a t test with zero as null
hypothesis for the sample mean.

Statistical analysis
All statistical tests were two-tailed unless stated otherwise. The
utilization of nonparametric tests (Kruskal–Wallis, Wilcoxon rank
sum, Wilcoxon signed rank tests) over parametric ones (ANOVA, t
tests) in one-way comparisons was decided upon significance of at
least one Shapiro–Wilk test of normality on the samples involved
(P < 0.05). Post-hoc, pairwise tests were adjusted for multiple
comparison with the Benjamini–Hochberg (BH) procedure. This

multiple comparison adjustment is also the one applied in general
where noted.

Code and software accessibility
The analyses were carried out with R and Python packages avail-
able online. Customized code and scripts supporting the current
study are available on https://gitlab.com/CaflischLab.

Results
The experiment is presented in Section Experimental design and
recordings (see also Fig. 1a and the description in the published
data set (Boran et al. 2020)). In the following, we will use also the
term “neuron” to indicate a unit.

We start by investigating the firing irregularities, or burstiness,
of the single units by using a metric that relies on the interspike
intervals (ISIs). We adopt a coefficient of local variation while
correcting for refractoriness defined as LvR (Shinomoto et al. 2003;
2009) (see Section Firing irregularities for details). The LvR metric
takes into account the local variations of consecutive ISIs, and its
value characterizes the spike train dynamic as regular (LvR <1),
random (Poisson-distributed, ∼1), or bursty (>1), as depicted in
Fig. 1b.

In order to assess the validity of this metric, we used another
proxy measure for quantifying irregularities in the spike trains,
namely, the number of change points (CP). CPs are designed
to locate and indicate sudden variations in firing rates. We
hypothesized that a higher count of CPs will be observed for
more irregular, burstier dynamics (see Fig. 1b as an example,
see Section Firing irregularities for details). The number of CPs
consistently exhibits significant correlations with LvR in all of the
anatomical areas (r = 0.20, t(17626) = 26.5; r = 0.24, t(9747) =
24.8; r = 0.26, t(13102) = 30.5 for hippocampus, amygdala, and
entorhinal cortex, respectively; all P-values < 10−10, Student’s
t test) (Fig. 1c). Notably, the CP count does not fulfill our
requirement of being independent of firing rates (correlations of
r = 0.38, 0.46, 0.36, respectively, as before; all P-values < 0.001),
thus highlighting that the LvR metric is a suitable approach to
the nontrivial task of unveiling results that depend specifically
on actual firing (ir)regularities rather than just rates.

Irregularities show a nontrivial relationship with firing
rates
By construction, LvR is invariant to gradual firing rate fluctua-
tions along time series, and, importantly, it does not depend on
differences in spike counts between units (Shinomoto et al. 2003).
In the following, we test the hypothesis that LvR and firing rates
have no trivial interdependence explicitly and in more depth.
This is crucial for the remainder of the analysis as we desire to
obtain information that is complementary to that provided by the
firing rates for describing the spike sequences. We start in Fig. 1d
by showing the average LvR values for single bins of firing rate
(1 Hz). In all of the 3 anatomical areas, the LvR trend for increasing
firing rates is neither linear nor strictly monotonic. Moreover,
although some strong correlations appear in specific intervals
of firing rates, e.g. in the hippocampus from 1 to 10 Hz, these
dependencies are not generally replicated in the other anatomical
areas. The diverse relationships between burstiness and firing
rate can also be observed in the global Pearson correlation values,
which assume different values and signs in hippocampus (r =
−0.21; t(18377) = −28.8, P < 10−10, Student’s t test), amygdala
(r = −0.06; t(10148) = −6.4, P < 10−10), and entorhinal cortex
(r = 0.11; t(13504) = 13.3, P < 10−10). Importantly, LvR displays
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Fig. 1. Memory task and firing irregularity of single neurons. (a) A modified Sternberg WM task was performed by epileptic patients. In each trial, a set
of 4, 6, or 8 letters was displayed on a screen during the encoding period (2 s). A delay period followed (3 s; maintenance) and, after that, a probe letter
appeared on the screen (retrieval). The subject then had to indicate whether the letter belonged to the set. (b) Examples of different firing patterns.
These 3 stylized patterns derive from LvR values distributed around 0.5, 1, and 1.5 for, respectively, regular, random (Poisson), and bursty dynamics.
Dots indicate CPs. (c) Scatter plot between LvR and the number of CPs. The 2 quantities are computed for each unit by averaging over single trials.
(d) Relationship between burstiness and firing rates. Firing rates computed for each neuron (418, 233, and 306 units for hippocampus, amygdala, and
entorhinal cortex, respectively) were grouped into 1-Hz bins. Mean LvR values with SEM are shown for each bin. Dashed lines indicate the average LvR
values. Pearson correlation values between LvR and firing rates computed over the whole neuronal population are shown on top. (e) Examples of time
series of LvR and firing rate values. Both of the quantities are calculated on a sliding window of 2-s with 50-ms steps. Windows are right-aligned to the
time index (therefore, the curves are flat for the first 2 s). Burstiness levels for the population of maintenance and probe neurons (Boran et al. 2019)
and trial-to-trial variability of the LvR values are examined in Fig. S1.

nontrivial behaviour also locally in time, meaning that sudden
changes in firing rates do not always trigger the same LvR vari-
ations, as highlighted by the examples in Fig. 1e.

Burstier patterns are present in all of the anatomical areas
although they appear to be volatile across trials
Having established a substantial independence from firing rate
values, we move now on to the specific measurements on LvR
alone in this data set. On average, we observe a prevalence of
irregular patterns (LvR = 1.19 [0.89,1.42], 1.22 [0.93,1.48], 1.19
[0.95,1.42], for hippocampus, amygdala, and entorhinal cortex,
respectively; mean and interquartile range (IQR) over all of the
trial×unit combinations). For the sake of completeness, the main-
tenance and probe neurons introduced in Boran et al. (2019) were
also inspected. These were identified as those with a higher spike
count during the maintenance or probe period, respectively, when
compared with the fixation period. As shown in Fig. S1a, mainte-
nance neurons display significantly lower LvR values with respect
to the other units in the entorhinal cortex (P = 0.026, Wilcoxon

rank sum test). For probe neurons, the difference depends also
on the anatomical area: in the hippocampus, they are associ-
ated with lower LvR values (P = 0.040) while in the amygdala
with higher ones (P = 0.024). Evidently, it is difficult to draw
conclusions on a definite relationship between irregularities and
sustained firing rates as those shown by maintenance and probe
neurons.

Next, we assessed whether the firing behaviour remains stable
within a recording session by investigating the trial-to-trial vari-
ability of LvR of individual units, see Fig. S1b. This is examined
by simply computing the mean and standard deviation of the
LvR values separately for each unit across trials. The correlation
values between standard deviation and average exhibit positive
to (weakly) negative values when examining in this order hip-
pocampus (r=0.573, P < 10−10), amygdala (0.225, P = 0.0005), and
entorhinal cortex (-0.126, P = 0.027). Thus, in both hippocampus
and amygdala, a neuron displaying burstier patterns will tend to
do so inconsistently across trials, whereas the opposite (to a weak
extent) is observed in the entorhinal cortex.
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LvR values are modulated selectively but weakly by trial
parameters in the different brain regions
Next, we inspect the relationship between burstiness and the
behavioural and trial variables. In preparation, we created a
three-way ANOVA model between LvR and three factors, namely,
set size, correct/wrong response, and trial period. The LvR was
computed for each unit on 2-s windows which were centered in
the respective trial periods (encoding, maintenance, retrieval;
fixation was excluded due to its short duration). Since we
required that each session should contain at least 5 trials with
wrong responses (out of ∼50), we collected data from only 7
sessions. The analysis delivered no significant results for the main
effects, except for the trial period in the hippocampus, which is
investigated later. We removed the correct/wrong response factor
to enable us to perform the ANOVA test with a larger number of
sessions (26, using only trials with correct responses). Trial period
appeared to modulate the LvR response in the hippocampus
(F2,31502 = 3.77, P = 0.023, ω2 = 0.0002) and the entorhinal cortex
(F2,23340 = 5.11, P = 0.006, ω2 = 0.0004), whereas set size affected
only the amygdala (F2,16868 = 9.42, P = 8·10−5, ω2 = 0.001). It must be
noted, however, that the effect sizes (ω2) are very small. Thus, it is
likely that other factors, behavioral or nonbehavioral, are required
to explain the total variance in LvR. In Fig. 2, we show the results of
the pairwise tests corresponding to those significant main effects.
During maintenance periods, higher LvR values are observed in
the entorhinal cortex and hippocampus, although the comparison
was significant only with respect to the retrieval period for the
latter. In the amygdala, on the other hand, we observe signifi-
cantly higher LvR values for set size 6 when compared with both
4 and 8.

Irregularities in unit combinations and their
relationship with response times
Irregularities can also occur and be monitored at the ensemble
rather than the single-unit level; for this reason, we extended
our analysis to include spike patterns resulting from pairs and
triplets of units. In practice, for the latter, we combined the spike
trains of 2 or 3 simultaneously recorded units and computed the
LvR measure on the joint time series (see Fig. 3a). The rationale
behind this procedure is that among the characterizations of a
‘persistent’ activity, the spike train of a single unit can appear
sparse and irregular. However, simultaneously recorded units can
fire asynchronously and together fill the activity gaps during the
delay period, showing ultimately persistent and, potentially, more
regular firing patterns as a whole (Lundqvist et al. 2018). On
the other hand, irregular patterns can be ultimately reinforced
by the combination of concomitant bursty patterns. It is thus
interesting to investigate whether genuine coordination between
units is present and to what extent they carry information on the
trial variables.

In Fig. 3b and c, we show the resultant burstiness values (red
curves) combining 2 and 3 individual spike trains, respectively
(green curves). In this and in following analyses, only random
subsamples of all possible combinations are utilized (see Section
Time-resolved analysis of irregularities and trial variables). The
relation between the individual components’ LvR and the
combined ones is, not surprisingly, monotonic on average (the
curves shown are smoothed). The combined value remains closer
to the smallest component in LvR (lighter hue) rather than to the
highest one (darker hue) for a large fraction of the total number
of combinations (around ∼80%) and LvR spectrum (up to ∼1.2 for
the combined value). The combined LvR thus seems to depend

Fig. 2. LvR values resolved by combination of anatomical area, set size,
and trial period. LvR values were calculated on 2-s windows centered on
the respective trial periods. A two-way ANOVA test with trial period and
set size as factors was performed beforehand within each anatomical
area. Only factors associated with significant main effects were
examined further (interaction effects were included in the model but
they did not reach significance). In particular, we show here the results
(P-values) of post-hoc pairwise t tests (*P <0.05, **<0.01,***<0.001,
BH-corrected).

considerably on correlations between units in the opposite cases
of strong and weak values. This is shown in Fig. 3d, where the
Jaccard similarity measured derived from 50-ms bins has been
adopted (not be confused with the use of the Jaccard measure
described in Section Experimental design and recordings). The
lowest LvR values, i.e. the more regular trains, tend to be formed
by uncorrelated units; on the other hand, there is a steep surge in
burstiness for highly correlated neurons. This can be understood
from the fact that closely coordinated spikes create smaller ISIs in
the joint spike train due to overlapping bursts. This contrasts with
two uncorrelated, bursty neurons, where the overlapped train is
unlikely to see a strong increase in short ISIs because the burst
periods do not align.

Burstiness shows correlations with response times
independently of firing rates and with larger effect sizes for
unit combinations
An interesting behavioural variable yet to be analyzed here is the
response time of the patients, which provides a proxy measure for
the level of attention as well as for the perceived complexity of the
task. In the following, we looked for possible relationships with
burstiness values. When simply ordered with respect to the LvR
values, the response times reveal a clear increasing trend (Fig. 3e).
We were curious if and how this effect varies along the time axis
of the trials and if its magnitude depends on the coordination
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Fig. 3. Combinations of pairs or triplets of spike trains. (a) Spike trains of two units recorded simultaneously (top) are combined into a new spike series.
The dashed, vertical lines highlight the time structure of a trial (fixation, encoding, maintenance, retrieval). (b) LvR values resulting from the
combination of 2 spike trains are sorted (red line) and shown along with those of their individual components (green traces). See Fig. S2 for an
alternative representation of these results where the single-unit values are sorted. (c) Same as in (b) but showing LvR values deriving from the
combinations of three spike trains. (d) Combined LvR values and correlations between spike trains. Jaccard values were computed between pairs of
binarized spike trains (50 ms bin; blue line). These values are reordered with respect to the combined LvR value obtained from the corresponding unit
pair (red line). (e) Combined LvR values and response times. Similarly to (d), the sorted sequence of paired LvR values (red line) is plotted but here along
with the (reordered) response time of the related trials (green). In panels (b)–(e), data from all of the sessions and anatomical areas are used; not all of
the combinations are plotted but a subsample that preserve the relative contribution of each session in terms of recorded units. A moving average
filter with a window of 10 and 60 points is applied in panels (b)–(d) and panel (e), respectively, for visualization reasons (∼40 000 points are shown).

between units. To this end, we computed Pearson correlations
between the response times and time-resolved LvR values of both
single and combinations of units computed on sliding windows of
2 s, see Fig. 4a. The significance of each value is assessed with
a permutation test respecting the trial structure (transparency
levels; P <0.05, BH-adjusted across the anatomical areas). The set
of combined LvR values was subsampled in each session in order
to match the number of units used for the single LvR results. In
this way, we guarantee a fair comparison between statistics for
the different levels of combinations. More details are in Section
Time-resolved analysis of irregularities and trial variables.

For all of the anatomical areas, higher correlation values are
observed almost everywhere for the combinations of 3 units
(Fig. 4a). The differences between paired and single-unit LvR val-
ues are less pronounced in comparison. Hippocampus and amyg-
dala show a marked modulation with respect to the specific
time window. Both of the 2 regions reach significant Pearson
correlations in encoding/fixation and in the last phase of each
trial. In addition, this holds for the amygdala also for a large
fraction of the maintenance period. In the entorhinal cortex, most
time windows show weak but significant correlation but only if
we consider combinations of 2 or 3 units. A similar time-resolved
analysis was performed for the categorical variables (set size and
correct response, see Fig. S3); however, we could not observe clear
or significant relationships of the LvR values with these 2 variables
for either single or combinations of units.

Could the correlations with response times be explained in
terms of firing rates? We repeated the analysis using firing rates

of single units instead of LvR and show the results in Fig. 4b.
Generally, firing rates tend to anticorrelate with the response
times with lower absolute magnitudes, except for the hippocam-
pus where the significance threshold is met everywhere. In spite
of the fact that the profiles approximately mirror those of LvR,
the correlations between LvR and response times seem to be
unaffected by firing rate values, as shown by a partial correlation
analysis (blue line, Fig. 4b).

From single-unit to population analyses in the
context of trial-to-trial variability
While the behavior of individual units is informative, it is almost
certainly primarily symptomatic of higher order processes taking
place at the level of ensembles of neurons (compare Fig. 4). Thus,
we next proceeded to examine irregular patterns at the popula-
tion level. In particular, we characterized population burst events
and their distributions. These events were investigated for two
main reasons: first, they represent episodes which can be relevant
for the underlying memory processes (Vaz et al. 2020); second,
they constitute a coordinated activity between units and, thus, it
might be interesting to check whether regular or irregular activi-
ties mediate this coordination. More in detail, a population burst
is defined as a period where the collective activity is sustained
and persists above a specific threshold computed by pooling all
of the trial data, see Fig. 5a and Section Population bursts for
details. Distinguishing between the bursty activity of single units
(quantified by LvR) and population bursts is important as the
latter are not a generalization of the approach taken in Fig. 3. For
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Fig. 4. Relation between time-resolved LvR values and response times. (a) Pearson correlation between LvR and response time. LvR and correlation
values are reported for right-aligned sliding windows of 2 s with 250 ms step (n=11 283, 6192, and 8544 points for hippocampus, amygdala, and
entorhinal cortex, respectively). Error bars on joint spike trains of 2 and 3 units (95% CI) derive from the repeated subsampling of unit combinations
(100 times; similarly to Fig. 3b–e, not all of the possible combinations are utilized, see Section Time-resolved analysis of irregularities and trial
variables for details). The opacity of symbols denotes significance of the respective correlation value when compared with a null distribution (P-value
< 0.05; permutation test). Significant differences between the combined values and the single-unit ones are indicated on top (t test, *P <0.05,
**<0.01,***<0.001). The gray vertical lines delineate the encoding, maintenance, and retrieval periods. In Figs. S3 and S4, a similar approach is used for
investigating the relationship between LvR and either set size or correct responses. (b) Contribution of firing rates. The same procedure as in panel (a)
was adopted for computing the correlations between firing rates and response times. Partial correlations between LvR and response times, while
controlling for firing rates, are included (‘LvR | FRate’) and often overlap with the LvR data. Only single-unit calculations are shown. See
Section Time-resolved analysis of irregularities and trial variables for details.

ease of reading, in this section, we will often refer to population
bursts simply as “bursts”.

Population burst activity is sharply modulated after probe
presentation
First, we analyzed the population burst density in a time-resolved
manner, and this is shown in Fig. 5b, which plots the fraction
of trials that display an ongoing burst event. Focusing on the
hippocampus, there is a slight increase in the first 2 s of the
maintenance period followed by a quick drop after the appearance
of the probe letter. This behaviour is reversed for the amygdala
and entorhinal cortex where an abrupt increase of burst activity
within 1 s of probe presentation is apparent. This enhancement
is likely to be triggered by the probe onset itself rather than being
related to the initiation of movement or to the effective memory
retrieval process. This is evident from the fact that the effective
burst density is reduced if the time series are aligned to the effec-
tive response time (inset to the right), although with smaller effect
for the amygdala. Average burst numbers and lengths confirm
this picture (Fig. S6a and b) but the absolute differences across
regions and trial periods are small. Can this enhanced activity
be explained by the probe neurons investigated in Boran et al.
(2019)? In Fig. S5, we measured the population bursts again but
excluding the probe neurons from the analysis. When aligned to
the probe presentation (left panels), the peak is indeed reduced
in the entorhinal cortex (although still prominent), but it remains
unaltered in the amygdala. On the other hand, a reduction in this
area does become visible when data are aligned to the response

times. Given that, we suspect that the population burst activity
stemming from the probe onset per se is likely to be evenly dis-
tributed across the population. In contrast, the signal associated
with the effective memory retrieval (if any) is likely to be captured
by a limited set of neurons, such as the one represented by the
probe neurons.

Properties of population bursts fail to inform on workload
Given the negative results in Fig. S3 for LvR, we wondered whether
population bursts show clear correlations with set size. Somewhat
surprisingly, Fig. S7 shows that partitioning the data into set size
4 vs 6–8 creates results that are generally indistinguishable from
each other, posing the question whether the frequency and length
of population bursts is more tied to anatomical features than to
representation. Thus, we also considered burst composition as a
feature. However, in Fig. S6c, the sparsity of bursts (how many
units contribute to a burst) is revealed to offer little contrast
across regions and periods remaining at close to 50%, and con-
sistent with this, we could not identify significant differences in
burst compositions for different set sizes relative to a reference,
see Fig. S8. The comparison of averaged single-unit LvR values and
the weighted average across units while bursting in a population
event (Fig. S6d) offers some unexpected and significant trends but,
again, primarily with anatomical region and not with trial epoch.

Trial-to-trial variability is lowest during retrieval
A suitable measure of the dispersion of our results across trials
is not only an important adjudicator of statistical relevance but
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Fig. 5. Population burst and trial-to-trial variability. (a) Example of population burst events. Spike raster plot of an example trial (top) and the global
firing rate (bottom) are shown. Burst events are defined as events longer than 100 ms where the collective firing rate exceeds a data-derived threshold.
See Section Population bursts for details. (b) Population burst density per anatomical area. The densities were calculated at each time bin (10 ms) as
the fraction of trials where a burst event was ongoing. Bootstrapping at the trial level (1000 times) was used to arrive at the 95% CIs that are shown. The
numbers of trials analyzed were 993, 809, and 806 for hippocampus, amygdala, and entorhinal cortex, respectively. Time traces aligned with respect to
the response time are shown on the right. In this case, trials with response times higher than 2 s were discarded (∼110 trials). In Fig. S5, we show the
burst density profile computed excluding the probe neurons. Further measurements regarding the bursts’ properties and their relationship to the
different sizes are provided in Figs. S6–S8. (c) Fano factor per MTL region. Calculations were performed on right-aligned sliding windows of 500 ms with
a 50-ms time step using a mean-matching procedure for controlling variability in firing rates (see Section Fano factor for details). Mean and 95% CIs
are shown. Horizontal lines represent the average value of FF during the fixation period. Vertical gray lines delineate trial periods. On the right inset
panel, spike trains from the different trials are instead aligned to the response time before calculating the FF. Results of a cluster-based nonparametric
permutation test are shown on the bottom (P < 0.05; violet: ‘Hipp’ vs ‘Amyg’; orange: ‘Hipp’ vs ‘Ent’; yellow: ‘Amyg’ vs ‘Ent’). (d) The same FF
calculation as in c) was repeated by splitting the neuronal population into 4 quartiles on the basis of their mean LvR values. The average FF within
each trial period is reported. The results of ANOVA and pairwise tests between the different combinations of quartiles and trial periods are reported in
the main text. (e) Same as (c) but distinguishing set sizes (4 vs 6–8) for each anatomical part. Results of a cluster-based nonparametric permutation
test are shown on the bottom (P < 0.05). A moving average filter of 4 points (200 ms) was applied in panels (c) and (e) to improve readability.

also an indicator of the presence of heterogeneous biological
mechanisms. Here, we turn to a Fano factor (FF) analysis of the
variability across trials to answer questions such as, for example,
how consistent are changes in population burst activity across
trial epochs? We start by examining the average FF values for the
3 anatomical areas along the trial time (Fig. 5c). The hippocampus
displays variability values that are generally higher compared
with the other 2 areas (cluster-based permutation test, P < 0.05,
Maris and Oostenveld (2007)). Amygdala and entorhinal cortex
assume distinct values in particular during maintenance, with
the amygdala showing more stable firing patterns across trials.
Generally, all of the areas offer a similar picture during the presen-
tation of any stimulus; specifically, we recognize a drop in FF after
the first second of the encoding period (ca.-4 s) as well as of the
retrieval period (ca.1 s). For the latter, the result appears consistent
with the population burst dynamics of Fig. 5b where a sustained
activity of amygdala and entorhinal cortex emerged with similar

timing relative to the probe presentation. On the other hand,
in Fig. 5c, also the hippocampus shows a reduced variability,
suggesting a consistent decrease, rather than increase, in burst
activity across trials. The inset (right panels) allows the interest-
ing observation that, unlike hippocampus and entorhinal cortex,
the FF of the amygdala is not minimal just before the time of
response but rather ∼1 s earlier. Moreover, it reaches lower FF than
those shown when aligned to probe presentation. Activity in the
amygdala thus seems to be more directly linked to the response
times (1 s in advance); this might be indicative of the fact that the
amygdala is more involved either in the preparation of movement
or in memory retrieval than the other anatomical regions.

Fano factor increases with burstiness values and helps
in discriminating the workloads
What is the relationship of FF with the irregularities of the
spike sequences? The answer to this question is not a trivial
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correspondence. For example, for spike trains exhibiting regular
patterns, the firing rates could either vary (high FF) or remain
constant (low FF) across trials. Similarly, bursty sequences could
display either asynchronous patterns (high FF) or coordinated
activity during specific epochs (low FF) (Constantinidis et al.
2018). If no specific time-locked activity is present, we do
expect higher FF for higher LvR values. In Fig. 5d, we split
the units into 4 quartiles based on their mean LvR values
and recomputed the FFs. The average values within each trial
period are shown. A two-way ANOVA with trial periods and LvR
quartiles was performed beforehand and showed significant main
effects for both of the factors in all of the anatomical areas
(F3,481 = [153.2, 4240.1], [110.0, 964.8], [94.5, 298.2] and ω2 =
[0.03, 0.93], [0.09, 0.78], [0.17, 0.54] for hippocampus, amygdala,
and entorhinal cortex, respectively; all P < 10−10. For the F- and
ω2-values, the 2 numbers in the parentheses refer to the main
effects of trial period and LvR quartile, respectively. The higher
the burstiness (i.e. the quartile), the larger is the trial variability
in virtually all of the anatomical areas and trial periods (Wilcoxon
signed rank tests, all P < 10−7). Hippocampal units span a much
larger spectrum of FF values when compared with units in the
amygdala and the entorhinal cortex, and all of the quartiles
tend to preserve roughly the same differences between the trial
periods, with the retrieval epoch exhibiting the lowest FF values
in all combinations of anatomical areas and quartiles (Wilcoxon
rank sum tests, all P < 0.01).

To conclude this analysis, we investigated whether the memory
workload modulates the trial-to-trial variability. When discrim-
inating set sizes (Fig. 5e), we observe significant differences
in FF values in all of the trial periods, including fixation. We
cannot exclude the caveat that this difference could arise from
the fact that the trial conditions were not always sampled
independently (see Section Experimental design and recordings).
Set size 4 yields significantly higher dispersion than 6–8 for much
of the maintenance period in hippocampus and amygdala and
also during retrieval when aligned to response time (right panels).
This suggests that higher workloads require more stable activity
for both memory phases although this seems to loose stringency
at the end of maintenance, possibly due to difficulties in retaining
the stimulus content. We observe also that the anticipation of
minimal FF with respect to the response time of the amygdala
is primarily the result of higher workloads (6 and 8). Given
that, we conjecture that this signal involves processes related
to mnemonic functions rather than movement ones. During
encoding, however, it is not possible to associate the (weaker) FF
decrease on the first stimuli presentation with a specific workload
(Fig. 5e, main panels).

Decoding analysis
In the final part of our analysis, we asked ourselves whether the
decoding capabilities of the population activity observed in Boran
et al. (2019) depend on their firing irregularities. In particular, is
the decoding of the workload dependent on the LvR values of the
underlying populations? In order to assess the importance of the
firing behaviour, we split again the neuronal pseudo-population,
obtained by pooling all of the sessions, into 4 quartiles defined
by the average LvR value of the units (compare Fig. 5d). For each
of these subpopulations, a linear decoder was trained and tested
following a cross-validation procedure. In order to avoid confusion
with the analysis of Fig. S3a, we remark that the decoding is
performed in an N-dimensional space, where N represents the
number of neurons, using the (normalized) firing rates. Overall,
we follow the analysis performed in Boran et al. (2019) but with

two main differences: we use here a decoding scheme based
on bootstrap for the alignment of trials belonging to different
sessions, and we distinguish the different units according to
their burstiness typology (see Section Decoding analysis for more
details).

Neural populations showing non-Poisson firing predict the
memory workload more accurately
We show the results of the analysis for the maintenance period
in Fig. 6a. We observe that encoding of set size generally benefits
from all of the anatomical areas and from the presence of all
of the neurons irrespective of their burstiness type. However,
when grouping the neuronal populations by their LvR values,
some differences arise between the anatomical areas. Units in
the hippocampus show significant decoding accuracies for all of
the quartiles except for the second one (corresponding to LvR
values between 1.03 and 1.16), with the most irregular neurons
performing best. A decreasing trend in performance is observed
for the amygdala, whereas units in the entorhinal cortex approach
the significance threshold only on the last quartile (LvR > 1.30,
P = 0.065) encompassing the most irregular neurons.

To corroborate these results, we explored a complementary
approach to investigate at finer resolution how firing charac-
teristics affect the decoding capabilities. Rather than splitting
the whole population into nonoverlapping subpopulations, we
remove in turn a small set of neurons equal to 1/20 of the
total number characterized. This small set, in the same spirit as
before, corresponds to a specific LvR n-tile. The resultant decoding
accuracies are compared with the full population ones, which
allows a fairer comparison between the 2 measures in terms
of dimensionality of the decoding space (differing by only 1/20
and not by 3/4 as before). In more detail, we compute sensitivity
indexes between the accuracy scores of full and depleted pop-
ulations while accounting for the variability between the cross-
validation folds (see Section Decoding analysis). The results are
shown in Fig. 6b. Qualitatively, the same patterns reported in
panel (a) concerning the set size decoding emerge also at finer
resolution. However, wider variations between contiguous n-tiles
are resolved, especially close to boundary values. For example, in
the hippocampus, the very last n-tiles do not contribute signifi-
cantly, and generally, across all of the anatomical areas, neurons
firing with regular patterns contribute only with the lowest LvR
values (first one or two n-tiles). Importantly, and this holds for
all of the anatomical areas, the random (Poisson) patterns seem
to carry no relevant information about the workload. We applied
the same procedure of Fig. 6 for decoding correct and wrong
responses from the population activity during maintenance (Fig.
S9). Somewhat surprisingly, not a single set of units reported a
significant accuracy.

Single-unit activity offers insights into mechanisms of
workload decoding
In the final part of our analysis, we tried to shed light on the
previous decoding results by investigating how the single-unit
firing rates coded for workloads in the different LvR quartiles.
In Fig. 6c, we plot the fraction of single units which displayed
significant differences in firing rates between the set sizes (4 vs
6-8 as for panel (a)). Qualitatively, the results across the quartiles
follow the same trends as observed in Fig. 6a, hinting at the fact
that much of the workload information is stored in single-unit
activity. Given this, it is interesting to observe that for the most
irregular and significant quartiles of Fig. 6a (that is, for “All” and
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Fig. 6. Decoding of trial variables during the maintenance period for different firing patterns. (a) Decoding performances of set size (left) during the
maintenance period are evaluated on neuronal subpopulations split into 4 quartiles according to their LvR measure (blue to yellow boxplots).
Decoding accuracies for the whole set of units are shown in red along with chance values obtained by shuffling the trial variable labels (grey). The
boxplots represent the distribution of 50 accuracy scores obtained by a bootstrap process aimed at sampling different alignment configurations
between trials of different sessions. Within each bootstrap cycle, a statistical test is performed using the chance level values obtained by scrambling
the labels (500 times). The 50 resultant P-values are summarized in the median value shown on top of each boxplot (BH-corrected within each
anatomical area). We employed a balanced linear SVM model trained and tested with a 10-fold cross validation procedure. See
Section Decoding analysis for more details. (b) Contributions of LvR subpopulations to the decoding performances. The higher the loss in accuracy
(y-axis), the larger is the contribution of the specific LvR n-tile to the decoding (x-axis). Similar to a), neuronal populations are split into 20 n-tiles
according to their LvR values, and, in turn, each n-tile is removed and the decoding procedure repeated as above. Here, we capture the normalized
decrease in accuracy performances with respect to the full population scores (see Section Population bursts). Mean and SEM of the indexes computed
across the bootstrap runs are shown. Results of a t test with zero as expected sample mean are reported on top (df=49, *P <0.05, **<0.01, ***<0.001;
BH-corrected across the different n-tiles). In Fig. S9, the same analysis of panels (a) and (b) is presented for the decoding of correct/wrong responses. (c)
Differences of single-unit firing rates between different set sizes. For each unit, a t test between the firing rates of trials with set sizes 4 and 6–8 is
performed (data points are the same as those utilized for panels (a) and (b)). The fraction of units yielding a significant test is reported while
distinguishing also the sign of the t statistic. Black segments are positioned at half height of the respective columns to guide the eye. Binomial tests on
the number of occurrences of significant positive (or negative) t statistics were performed (P–values shown on top).

“Hipp”), the number of units responding for large set sizes (6–
8) is significantly higher than that favouring lower workloads
(binomial test, Fig. 6c, top). We therefore conjecture that burstier
units tend to possess a simpler code for the workloads, which is
based on a coordinated increase in firing rates rather than on an
asynchronous mixed activity across units.

Discussion
The discharge patterns that are observed in the MTL during
different memory phases are hypothesized to contain information
about the memory items as well as shed light on the underlying
neuronal dynamics that govern the memory processes. Differ-
ently from the approaches adopted in many prior works (Bausch
et al. 2021; Boran et al. 2019; Derner et al. 2020; Kamiński and
Rutishauser 2020; Kamiński et al. 2020; Kornblith et al. 2017) (see
also Rutishauser et al. (2021)), we did not, except for controls
following Boran et al. (2019), distinguish neurons based on their
firing rate levels associated with external variables and observ-
ables, such as trial periods, task conditions, or memory items.
Such an approach contains the implicit assumption that only
a small fraction of neurons carry information about behaviour
and stimuli. Instead, we kept our focus on the whole set of
recorded neurons and analyzed how the (ir)regularity levels at
different resolution stages, i.e. single-unit, unit combinations, and

population level, appear to inform on the different trial variables.
Furthermore, we moved away from a spike rate-centric approach
and from an analysis driven by the external variables and instead
focused on the internal activity (Buzsáki 2020). Such an analysis
has higher exploratory power as it is able to assess also WM mod-
els that differ from the ones built on the hypothesis of persistent
neuronal activity (Kamiński et al. 2017).

Burstiness levels are indicative of response times and
attention levels
Our analysis is based in large part on the quantification of the
irregularities of spike trains through the LvR metric, which has
a nontrivial albeit weak interdependence with net firing rates
(Shinomoto et al. 2003) (Fig. 1d and e). We found that higher LvR
values and, thus, burstier patterns tend to be associated with
higher response times, with particular emphasis for the entorhi-
nal cortex and the amygdala during the delay (maintenance)
period. Irregularity patterns resulting from the combinations of
multiple units (two and three) were generally more correlated
with observed response times, suggesting that ensemble-level
coordination between units can better encode behavioural
responses. Moreover, since burstier patterns, which are associated
with slower responses, are related to higher correlations between
units (Fig. 3d), it would be interesting to explore whether they
play a role in describing/controlling attention levels (as in
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Cohen and Maunsell (2009)). The fact that significant correlations
are observed in the beginning of the encoding period, comprising
also fixation, suggests that the attention level should be
considered when interpreting the results obtained.

The relationship between burstiness and attention has been
previously investigated, especially in nonhuman primate studies.
For example, in the anterior cingulate and the lateral prefrontal
cortex, an increase in the number of single-unit bursts was iden-
tified during different states of attention and associated with a
functional synchronization between the 2 different brain areas
(Womelsdorf et al. 2014). These results are seemingly at odds
with ours: however, it must be considered that the definition of
single-unit bursts adopted therein is highly dependent on the
spike counts. Differently, a net distinction between firing rates
and burstiness was highlighted in Anderson et al. (2013) (see also
Xue et al. (2017)); the authors observed 2 concurrent attention-
dependent phenomena in the V4 cortical area of macaques: an
increase in firing rate and a reduction in burstiness. There, the
assessment of burstiness relied on the distribution of ISIs, thus
making their results more comparable to ours in terms of both
the chosen metric and of the observed behavioral relationships
(i.e. higher attention levels corresponds to lower burstiness).

Importantly, the relation between attention and WM is not yet
clear, both on the behavioural level but especially in its realization
in the neural substrates (Oberauer 2019; Shevlin 2020). Our results
hint at the discharge patterns as a variable of interest to dis-
entangle the aforementioned relationship. For example, specific
memory activity might be mediated by spike counts of the main-
tenance neurons of Boran et al. (2019) or more generally through
memory-selective cells (Rutishauser et al. 2021), while the nature
of the discharge patterns might relate only to attention-related
variables. Indeed, we did not find any relevant workload depen-
dence of the LvR values in the MTL regions, except for a puzzling
preference in the amygdala of high burstiness values for the
intermediate set size 6 (Fig. 2).

Persistent vs transient activity: potential integration of the
two models
Considering the discussions around the competing theories
underlying WM dynamics (mostly) in the prefrontal cortex
(Constantinidis et al. 2018; Lundqvist et al. 2018; Masse et al.
2020), comparatively less research on this topic has been
performed relying on data from the MTL areas analyzed here
(Boran et al. 2019; Kamiński et al. 2020; Kornblith et al. 2017).
The main discussion between the prevalent models postulating
asynchronous, persistent activity against those which argue for a
dominant role of transient (bursty) but coordinated (or also silent)
activity is hampered by the definition of “persistent” activity. This
is a term that is adopted widely in the literature but, as observed
in Kamiński et al. (2017), it frequently remains ambiguous and
lacks a sound quantitative definition. For example, it is not
always clear which neural substrates and at which resolution
this activity should be observed and defined as such, i.e. single
neuron (more often), population level and local networks, or brain
oscillation (Leavitt et al. 2017). In addition to that, it must be
remarked that each brain area can show intrinsically diverse
activity characteristics during the delay period; this activity,
in turn, can depend also on the stimulus type and on the
structure of the memory tasks (Christophel et al. 2017; Leavitt
et al. 2017; Sreenivasan and D’Esposito 2019). Here, we choose
to equate persistence with the regularity (or randomness) of
the spike trains and the competing transient activity with the
burstier patterns (high LvR). However, for the aforementioned

reasons, it is important to always interpret this terminology with
caution.

Our analysis shows that the successful retrieval of information
in memory (correctness of the response) and the workload (set
size) cannot be decoded with clarity from the spectrum of bursti-
ness values of single units or combinations thereof (two or three)
during the maintenance period (Figs. 2 and S3). Similarly, the
frequency and properties of population bursts were not helpful
toward this goal either (Fig. S7). On the other hand, when decoding
the workload from the (pseudo-)population activity patterns, our
results suggest that in the hippocampus and, to a lesser extent, in
the entorhinal cortex, both neurons with regular and with bursty
patterns concomitantly provide a significant contribution toward
decoding performance with the latter showing slightly larger
accuracies (Fig. 6a and b) when their respective contributions are
isolated. Possibly, the burstier the neurons, the more linear is the
relationship between firing rates and set size, favouring thus a
better discrimination of workloads already at the single-unit level.
This would be consistent with the data for the hippocampus in
Fig. 6c where the quartile of highest burstiness is the only single-
region one returning a significant result on the binomial test
measuring preference for which set size corresponds to higher
firing rates. In contrast to the other 2 regions, neurons in the
amygdala tend to exhibit better performances the more regular
their spiking activity is. Our results thus do not exclude the
possibility of an integration of the two aforementioned competing
models (transient and persistent) within the same brain system.
However, as mentioned above, we cannot and should not rule
out the possibility that one signal corresponds to the actual
memory content, while the other encodes the level of general
attention that can certainly be modulated by the memory load.
This concurrent encoding based on single-unit (ir)regularity might
be compatible with the multiplexing of information by single
isolated spikes and rapid succession of those at the population
level (Naud and Sprekeler 2018; Oswald et al. 2004).

In a recent work (Li et al. 2021), it was shown that compu-
tational models of WM implementing either burst-coding or
elevated persistent activity could be distinguished by measure-
ments of trial-to-trial variability. In particular, for the first class
of models (“burst-coding”), the authors predicted an increased
FF during the delay period, while the second class (‘elevated
persistent’) displayed more stability across trials (lower FF).
Our own results do not favor either model clearly. We did
not in fact observe variations in FF between the fixation and
the maintenance periods (Fig. 5c), except for a decrease in the
amygdala that actually stretches into the encoding period. The
same observation emerged when distinguishing neuronal sub-
populations by their burstiness as characterized by LvR quartiles
(Fig. 5d).

We did observe an important modulation of the population
burst activity subsequent to the probe presentation (∼0.5 s after;
Fig. 5b). The enhanced activity in the entorhinal cortex and amyg-
dala at population level is consistent with the identification of
“probe” neurons at single-unit level in Boran et al. (2019); Kamiński
et al. (2020). However, this specific neuronal set is not solely
responsible for these peaks of activity as they persist, at least par-
tially, even in the absence of probe neurons (Fig. S5). As suggested
in the cited works, these activity signals likely indicate a switch
between a memory maintenance phase and a retrieval process
(Kamiński et al. 2020). This applies especially to the entorhinal
cortex. For the amygdala, we observe a minimum in FF that is
time-locked to the response time (1 s before) and modulated
by higher workloads, which suggests a possible involvement in
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memory retrieval functions (Fig. 5c and e). The net activity
decrease observed in the hippocampal population is however
less clear.

Final remarks
Summarizing, three main results emerge from the analysis of
burstiness, which is a measure of the irregularity of the spike
trains, during a WM task in the MTL. First, the promptness of
the response, but not the workload, is inversely correlated with
burstiness levels (Fig. 4a). The occurrence of these correlations
already in the early phases of the task indicates a possible
dependence on the global level of attention in the test subjects.
Second, probe presentation is characterized by different degrees
of burst activity at the population level: strongly enhanced in
the entorhinal cortex and amygdala but suppressed in the hip-
pocampus (Fig. 5b). These signals are distributed across the whole
population of neurons and may signify a retrieval of information
from memory for the amygdala. Third, firing rates associated
with non-Poisson (nonrandom) firing, either regular or bursty, can
predict better the memory workload than those related to random
patterns (Fig. 6). Our results suggest that WM might be main-
tained through an interplay of heterogeneous spiking dynam-
ics, without clearly favouring either of the proposed models
(persistent vs transient).

The activities of the regions analyzed here (hippocampus,
amygdala, and entorhinal cortex) show distinct features in the
spiking patterns and in the association to behavioral and trial
data. Overall, they indicate that a broader perspective of the
timing and structure of spiking patterns, not constrained to the
concept of persistent (enhanced) activity, is needed. In our study,
we adopted multiple quantities related to spiking variability, such
as LvR (across time), population bursts (across neurons), and Fano
factor (across trials), which could be misconceived to be highly
correlated when in fact they probe different aspects of the neural
code. Indeed, our results suggest that these 3 aforementioned
quantities can help in discriminating response times, memory
retrieval processes, and workload, depending on the anatomical
area. Clearly, the methods utilized here do not exhaust the set
of metrics that can offer insights into WM function. For example,
classification of spike events or information theory-based metrics
can aid our understanding of the simultaneous coding of different
signals and how these are shared across neurons (Naud and
Sprekeler 2018; Quian Quiroga and Panzeri 2009; Safaai et al. 2018;
Williams et al. 2021). In addition, future studies could examine if
interactions between different areas also carry information about
WM performance (see, e.g. Dimakopoulos et al. (2022)). Also, they
should attempt to unveil whether and how the different classes of
firing patterns (regular, random, bursty) are generated internally
or whether they are induced from a neighboring area (Sreenivasan
and D’Esposito 2019). It is likely that heterogeneous references
will be more adequate than a simple, standard WM experiment
for investigating the discharge patterns. An increased complexity
of the tasks, with, e.g. variable length delays, distracting stimuli or
different probing schemes (Bausch et al. 2021), but also extended
fixation periods could offer more insights into the stability of the
spiking sequences.
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