
Computer Physics Communications 184 (2013) 2446–2453
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A scalable algorithm to order and annotate continuous observations
reveals the metastable states visited by dynamical systems
Nicolas Blöchliger, Andreas Vitalis ∗, Amedeo Caflisch
Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 30 October 2012
Received in revised form
7 June 2013
Accepted 12 June 2013
Available online 25 June 2013

Keywords:
Complex system
Trajectory analysis
Scalable algorithm
Minimum spanning tree
Free energy basins

a b s t r a c t

Advances in IT infrastructure have enabled the generation and storage of very large data sets describing
complex systems continuously in time. These can derive from both simulations and measurements.
Analysis of such data requires the availability of scalable algorithms. In this contribution, we propose
a scalable algorithm that partitions instantaneous observations (snapshots) of a complex system into
kinetically distinct sets (termed basins). To do so, we use a combination of ordering snapshots employing
the method’s only essential parameter, i.e., a definition of pairwise distance, and annotating the resultant
sequence, the so-called progress index, in different ways. Specifically, we propose a combination of cut-
based and structural annotations with the former responsible for the kinetic grouping and the latter for
diagnostics and interpretation. The method is applied to an illustrative test case, and the scaling of an
approximate version is demonstrated to be O(N logN) with N being the number of snapshots. Two real-
world data sets from river hydrology measurements and protein folding simulations are then used to
highlight the utility of the method in finding basins for complex systems. Both limitations and benefits of
the approach are discussed along with routes for future research.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

With present day computing resources, large-scale temporal
simulations of complex systems can be performed routinely, and
time-resolved, experimental data in many dimensions are col-
lected and stored. In both cases, the resultant, very large amounts
of data require dedicated, scalable protocols to handle access and
analysis [1–3]. Examples can be found in fields such as protein sci-
ence [4,5], astronomy [6], cell biology [7], or climatology [8] to
name just a few.

For a complex system evolving in time, data are present in the
form of sequences of instantaneous snapshots (microstates in the
language of statisticalmechanics) of this complex system, and such
a sequence will be referred to as a trajectory throughout. Depend-
ing on whether data are synthetic or real, the implied projection
of the system to obtain a snapshot may differ, and this may limit
spatial resolution. Temporal resolution is limited directly by the in-
struments or numerical schemes if storage space is not a concern.
Even though continuous evolution need not be observed explicitly
as a function of time, we will restrict our terminology to this case.
Routine analyses of trajectory datamay involve computing average
properties and their estimated distribution functions inO(N) time,
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where N is the number of snapshots. Distribution functions offer
hints toward the diversity of states visited by the complex system
and their relative weights. Time-resolved analyses provide insight
regarding state connectivity and transition rates. Projection onto
low-dimensional properties is necessary to render such analyses
statistically meaningful and visualizable by conventional means.

If we assume that snapshots follow a well-defined distribution
(such as the Boltzmann distribution for particles in the classical
limit), these analyses look for spatial domains that are highly pop-
ulated under the given conditions, i.e., those forwhich a finite sam-
ple yields higher-than-average densities of microstates, preferably
through recurrence [9]. Here, recurrence refers to the trajectory’s
property of entering and exiting subdomains within high den-
sity regions several times. The motivation behind this is twofold:
(1) characterization of the complex system and communication of
results in terms fit for human consumption [10]; (2) derivation of
simplified models that provide a meaningful representation of the
complex system [11,12]. Such models can preserve coarse-grained
dynamical and static properties of the system and enable predic-
tions to bemade over vastly extended temporal or spatial domains.

When analyzing trajectories in projected spaces, high den-
sity regions are prone to overlap, and plots rarely resolve all of
them [13]. This overlap phenomenon can lead to incorrect con-
clusions regarding the diversity and connectivity of coarse states.
Consequently, affordable protocols that require little knowledge of
the system a priori and that decrease the likelihood of such overlap
are of interest. Techniques such as principal component analysis,
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spectral clustering [14] and the related diffusion maps [15], locally
linear embeddings [16], cut-based free energy profiles [17], kinetic
groupings based on networks [18–21], which are specific cases of
community detection algorithms in graphs [22], etc. are all in use,
but many of them scale superlinearly with N .

Data clustering [23] offers a simple route to the identification
of high density domains. Clusters are defined as groups of mutu-
ally similar snapshots. Similarity is assessed by a criterion of dis-
tance generally requiring an ad hoc selection of both a subset of
features [24] and a functional form. However, a grouping meant to
describe an evolving system should also encode dynamic proxim-
ity [25], i.e., given a time resolution, which snapshots constitute
a kinetically distinct state? If the system is of atomic scale and
at equilibrium, this question aims to identify free energy basins
and barriers in a generally high-dimensional phase space [26,27].
Positional coordinates of atoms are often used exclusively given
that momenta can likely be ignored out on account of their much
shorter autocorrelation times. We note that the language and con-
cepts of statistical physics have proven useful in the analysis of
nonphysical systems as well [28], i.e., our adaptation of this lan-
guage does not imply a restricted domain of application.

In this contribution, we present an algorithm that operates di-
rectly on a trajectory.With just the definition of a pairwise distance
between snapshots,we are able to generate a one-dimensional plot
that allows the identification of states in a joint geometric and ki-
netic sense, whichwewill refer to as basins.With standardmetrics
derived from microstate representations (such as interatomic dis-
tances in a flexible molecule), the method relies on the continuity
of geometric representations in time. This implies that it may fail
for certain classes of discrete systems. The main benefits of our al-
gorithm are that it does not rely on any parameters per se, that it is
very likely to resolve all basins, and that with the help of reason-
able approximations to the exact procedure, the total running time
approaches O(N logN). The combination of these points is worth
emphasizing, since we believe that they constitute a desirable and
unique fingerprint of our approach.

The rest of this manuscript is structured as follows. First, we
present the key ideas behind the procedure (Section 2.1) and il-
lustrate its utility with a suitable model system (2.2). Next, we de-
scribe a computationally efficient and robust approximation to the
exact procedure. The scaling of computational cost with data set
size and dimensionality is tested explicitly (2.3). This is followed
by applying the method to two complex real-world data sets, the
first fromhydrology (3.1) and the second fromprotein folding (3.2).
We conclude by discussing the advantages and possible problems
in comparison with related approaches (4).

2. Methods and proof of concept

2.1. The exact algorithm

Let T = {t1, . . . , tN} be a set (trajectory) of N unique snapshots,
which usually are representations of the system in RD, which is
the chosen subspace of the original system representation with
D ≤ Dsystem. We use any pairwise distance d : RD

× RD
→ R≥0

to measure the similarity between two snapshots. This need not
be a purely coordinate-dependent function. Below it will prove
beneficial for d to be a metric yielding a continuous number space
with all O(N2) values of d being unique.

We can now define the following iterative procedure. Choose a
starting snapshot s1 ∈ T and create the set S1 = {s1}. Initialize the
cut function, c : {1, . . . ,N} → N, to 2. Then, for i = 1, . . . ,N − 1
do the following:

1. Define si+1 as the snapshot in T\Si realizing the minimum of
d(·, Si) = minj=1,...,i d(·, sj).
Fig. 1. Schematic highlighting the fundamental components of the algorithm. A.
A set of points in two dimensions is shown as circles. See 2.1 for details. B. The
points in A are shown as a subset of a larger data set. Arrows and letters indicate
progression in time. The color scheme follows the order in which points are added
when starting with point p, i.e., colors trace the progress index itself. The schematic
on the bottom shows values for the inverse logarithm of c at each value of the
progress index. An example point and the cut to obtain the respective partitions Si
and Ai are highlighted. Point c illustrates an outlier, which are prone to be added last
to S. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2. Let Si+1 = Si ∪ {si+1}.
3. Define c(i + 1) =

N−1
j=1 ζSi+1(tj, tj+1).

Here, the function ζ is defined as

ζX (t, u) =


0 if neither or both t and u are part of set X
1 otherwise. (1)

The exact progress index of T starting with s1 is defined as the
sequence S(T , s1) = (s1, . . . , sN). Each entry i is associated
with a value for the cut function, c(i). In words, given a starting
snapshot, the algorithm finds a unique ordering of the snapshots,
and annotates it with the number of transitions between the two
partitions defined by all the snapshots that are currently part of the
set (Si) and those that are not yet part of the set (Ai = T\Si). The cut
function c is related to the mean first passage time in the implied
two-state Markov model via

τMFP(Ai → Si) + τMFP(Si → Ai) = 2N/c(i). (2)

We use τAS as shorthand notation for τMFP(Ai → Si) throughout.
In Fig. 1(A), we show an illustration of a trajectory in 2D space
with the current set of snapshots 1–3. The order of adding further
snapshots would then be d,n, r, e, and q based on the mutual
distance relations. There are no free parameters beyond having to
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Fig. 2. Illustration of the approach using n-butane. The 27 basins of the system
are all clearly resolved. Amongst those basins with the CCCC dihedral angle in
anti, adjacent basins involve the rotation of only one of the methyl groups. This
is fortuitous but signifies that the following basin in terms of the progress index
is chosen on account of the sampling density in transition regions to any of
the preceding ones. This density is higher for transitions involving only a single
rotation. Points plotted in red correspond to snapshots that are classified as eclipsed
according to the binning strategy described in 2.2 and are found preferentially
toward the right half of basins and at the largest values of the progress index in
general. The color annotation uses a simplified binning into 120° bins and does
not display eclipsed microstates. The implied unit of time on the y-axis is a single
snapshot, i.e., 250 fs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

define distance relations, and for this purpose we have chosen the
canonical tool, i.e., a metric. In Fig. 1(B), the same set of points is
shown as part of a longer trajectory. Here, letters indicate temporal
order (a–x), whereas coloring tracks the progress index (blue–red)
when using p as the starting snapshot. The cut function, i.e., the
number of transitions between Si and T\Si, is illustrated in the
lower half of the plot. The logarithm of the inverse of c(i) produces
small values if there aremany transitions and peaks if there are few
transitions. The latter is highlighted in Fig. 1(B) for set S with m
being the snapshot having been added last. Fig. 1(B) illustrates the
hypothesis that maxima in the logarithm of Eq. (2) will correspond
to kinetic barriers separating basins to the left from those to the
right. Consequently, the cut function should qualitatively encode
dynamic properties of the system.

We note that the algorithm has two distinct parts: the progress
index generation and the annotation function, here the cut func-
tion c. Both components can be treated and modified indepen-
dently. A determination of the exact progress index is related to
finding the minimum spanning tree (MST) of a complete graph
with N vertices corresponding to all the ti and edges with weights
given via d(ti, tj). The implementationweuse scaleswith an overall
complexity near O(N2) and is described briefly in the Supplemen-
tary Information (SI), S.1.1 (see the Appendix). The exact progress
index of T is unique if all possible d(ti, tj) are distinct, and a unique
progress index does not depend on the order the snapshots appear
in T , i.e., it does not contain any kinetic information. By construc-
tion, it is not possible for geometrically distinct basins to overlap
provided that the sampling is good enough. Moreover, it is worth
noting that the progress index does not imply that a given basin is
closest kinetically to the one immediately to the left, but rather to
any basin to the left.

2.2. Illustration with labeled n-butane

Let the linear alkane n-butane be described by three dihedral
angles specifying rotations around all three carbon–carbon bonds
(see Fig. 2). We assume atoms to be labeled such that the
degeneracy of states can be resolved. In our chosen description,
each dihedral angle has three distinct potential energy minima at
180°, 60°, and −60° corresponding to anti, gauche+, and gauche−

conformations. The potential has threefold symmetry for the
methyl groups but favors anti for the central dihedral angle. It is
expected that the system has access to 33

= 27 coarse, metastable
states. This is a good example for the algorithm presented in 2.1
since the low dimensionality and good knowledge of the system
allow us to characterize basins and transitions independently.

Using stochastic dynamics simulations (see SI, S.1.4.1), we gen-
erated a classical trajectory of 30000 snapshots under conditions
such that recurrent sampling of all 27 basins is observed. Fig. 2
shows a plot generated by the algorithm described in 2.1 based on
a trajectory with a time resolution of 250 fs and using a distance
function defined on the three dihedral angles [29]. Clearly, we can
resolve all basins, which is in contrast to cut-based free energy pro-
files used in prior work [29]. To confirm that the indicated basins
do indeed correspond to the 27 expected ones, a color map repre-
senting an independent annotation based on binning the three de-
grees of freedom separately is shown. This correspondence is also
established in Fig. S.1 with the help of box plots. Both figures re-
veal an asymmetry for snapshots within basins: points in highest
density regions appear toward the left, and points in lower density
(‘‘fringe’’) regions appear toward the right. The latter correspond to
eclipsed states, which have maximal enthalpy for this system. The
asymmetry within each basin is a natural consequence of the way
the progress index is constructed and annotated.

Further exploration of this system is meant to analyze two
critical issues. First, what is the impact of the trajectory’s time
resolution? Second, can a connection between the results in Fig. 2
and an independent analysis of the thermodynamics and kinetics
of this system be established?

We expect the progress index annotated with c as in Fig. 2 to
successively lose its pertinent features if time resolution becomes
so coarse that the various basin-to-basin transitions can no longer
be resolved. We note that such a trajectory will eventually look
random, which implies that the cut function just reports on
the relative sizes of the two partitions, and not on (time-)local
groupings of snapshots. This is indeed the case as shown in Fig. 3.
For a resolution beyond 6 ps, the profile relaxes to a smooth,
parabolic shape, which can be rationalized based on combinatorial
arguments. We plot as a dashed line in Fig. 3 the analytically
derived prior expected for a completely random trajectory (see
SI, S.1.2). The result in Fig. 3 is obtained despite the fact that the
progress index still orders the snapshots in fundamentally the
same way as at finer time resolution. To make this point, a color
map analogous to Fig. 2 is shown in Fig. 3 for the progress index
derived from the 31.25 ps case. Therefore, the lack of features in
Fig. 3 is not a result of overlap in theway onewould encounter it in
histogram- [17,30] or cut-based methods [29]. This is a significant
advantage of our approach.

To perform an independent analysis of thermodynamics and ki-
netics, we constructed a set of macrostates by creating a 3D his-
togram with cubic bins of side length 60°. Bins are called eclipsed
unless all three dimensions are centered at one of the three poten-
tial energyminima. Thus, 33 out of 63 macrostates are not eclipsed,
and those correspond to the 27 basins. The resultant sequence of
macrostates can be used to infer the transition matrix of an un-
derlyingMarkov state model (MSM). From theMSM, pairwise τMFP
values can be computed. If we now consider the progress index,
at each point, we have a given MSM state annotation of the points
immediately to the left (smaller values of the progress index) and
to the right (larger values of the progress index). We may then in-
fer the dominantly populated macrostate to either side via maxi-
mum likelihood guesses.With the knowledge of those two guesses,
L and R, for each point of the progress index, we can plot the sum
τMFP(L → R) + τMFP(R → L). If L ≡ R, the result is directly pro-
portional to the inverse of the probability of L ≡ R. Conversely,
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Fig. 3. Dependence of progress index and annotation function on temporal
resolution. Data comparable to Fig. 2 are shown for decreasing temporal
resolution. Features are successively lost, and at 31.25 ps the annotation becomes
indistinguishable from that expected for a completely random trajectory (prior
function). For the cases of 1.25 and 6.25 ps, it is apparent that the strong inherent
curvature of function c impedes the identification of basins if they are small and/or
temporal resolution is poor. For each curve the implied unit of time on the y-axis is
a single snapshot of the respective trajectory, i.e., the saving frequency or temporal
resolution itself. As in Fig. 2, a color annotation is shown, here for the 31.25 ps
case. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

if the point is in a barrier region, L ≠ R and the result measures
the kinetic proximity of two neighboring macrostates. These data
are shown as the green curve in Fig. 4. Comparison with the origi-
nal profile shows that there is no quantitative relationship between
the two plots. It is therefore impossible to obtain quantitative ther-
modynamic or kinetic information from c. This is expected because
the cut functionmeasures kinetics in a crude two-state assumption
(A and S above) and not between individual basins.

Are there alternative annotation functions to consider? Here,
we define a ‘localized’ cut function as follows:

l(i) =

N−1
j=1

ζBi(nl(i))(tj, tj+1)ζCi(nl(i))(tj, tj+1). (3)

In Eq. (3), partition Bi(nl(i)) is defined as Si−1\Si−1−nl(i), and
partition Ci(nl(i)) is defined as Si−1+nl(i)\Si−1. This corresponds to
a restriction of the cut function to contributions from points in
the trajectory that are near in the progress index, and function l
is expected to offer better resolution than c for reasonable choices
of nl(i). A progress index annotated with l is shown in Fig. 4 as
well. Due to the peculiar nature of the system, the parameter nl(i)
in Eq. (3) is chosen in accordance with average basin sizes (see
the caption to Fig. 4). There is very good correspondence between
these results and the thermodynamic information inferred from
the MSM. However, Fig. 4 shows that peak heights are not
correlated beyond both sets appearing to populate two dominant
ranges of values. Quantitative correspondence is unlikely because
Fig. 4. Quantitative kinetic and thermodynamic interpretation of two annotation
functions. The standard annotation function via Eq. (1) is reproduced identically
to Fig. 2 (black). The localized annotation function defined in Eq. (3) is shown in
red. Because basins have two standard sizes (assumed to be 1600 snapshots if the
central torsion is in anti and 400 snapshots otherwise), we generated datawith nl(i)
set to fixed values of either 1600 or 400 snapshots. For the curve shown in the plot,
values were simply interpolated to convert from the case with nl(i) = 1600 to the
casewith nl(i) = 400 over values of the progress index of 17300–17700. Lastly, the
green curve shows results from an underlying MSM as described in 2.2. The width
for constructing the maximum likelihood guess of assigning basins L and Rwas 100
snapshots throughout. The implied unit of time on the y-axis is a single snapshot,
i.e., 250 fs. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the cut function defined by Eq. (3) is not equivalent to well-
defined kinetic information within the underlying three-state
MSM. However, function l does appear to be able to provide
higher resolution when it comes to identifying basins. This is
highlighted by comparison of Figs. 3 and S.2 for the 1.25 ps
case, which reveals that the inherent curvature of function c
may limit basin delineation before the time resolution approaches
characteristic transition times of the system. If meaningful values
for nl(i) can be found, annotation with l is likely to provide more
information.

2.3. An approximate algorithm operating in near-linear time

Because the exact algorithm as described in 2.1 and expanded
upon in the SI, S.1.1, requires approximately O(N2) time, it is im-
practical for large data sets. In this section, we outline conceptually
the implementation of an approximate algorithm that operates in
O(N logN) time. A detailed description is found in the SI, S.1.3.

Briefly, a spanning tree is constructed with Borůvka’s algo-
rithm [31], which works by successively merging subtrees using
nearest neighbors. However, instead of considering rigorous near-
est neighbors for each subtree, we instead consider a set of nearby
snapshots, which is extracted frompreorganizing the data via hier-
archical clustering [29]. A hierarchical grouping means that snap-
shots are partitioned into groups of similar objects (clusters) for
a range of resolutions. The set of nearby snapshots is then con-
stituted from the union of all clusters that the subtree spans, and
which are not yet part of the subtree. This is done for the finest
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Fig. 5. Runtime analysis for the approximate version of the proposed algorithm. A.
The cost for computing the SST is shown as a function of N logN , i.e., the expected
complexity.We also show a linear fit and the costs for the tree-based clustering and
generation of the progress index from the SST. An apparent scaling exponent from
a double logarithmic plot of cost vs. N (not shown) is 1.15, close to the expected
value of 1.08 for this range of values for N . Data are for the case where the number
of clusters at the leaf level of the hierarchical clustering grows linearly with N , i.e.,
the average cluster size is roughly constant (see S.1.3). B. Computational cost of
SST construction as a function of dimensionality. Dwas adjusted as described in SI,
S.1.4.2. As expected, cost is linear in D, and four independent trials yield similar
answers. C. Computational cost of SST construction as a function of the number
of guesses, Ng . Because Ng will eventually exceed the size of the restricted search
space, it is expected that cost scales sublinearly with Ng . This is confirmed by the
double logarithmic plot.

resolution level still yielding a nonempty set. If the set is larger
than a parameter, Ng ,Ng guesses are taken instead of search-
ing the entire set. These two approximations limiting the search
space mean that for a given subtree the number of candidate
edges is within a constant upper bound, which gives the desired
complexity of O(N logN). The output is a ‘‘short’’ spanning tree
(SST) used for the generation of progress index and annotation
functions analogously to the MST in the exact case. Qualitative
neighbor relations are expected to be preserved in the SST with
the approximations primarily leading to randomization within
basins.

The scaling with data set size (see SI, S.1.4.2) is demonstrated
in Fig. 5(A) for a fixed value for Ng of 20. Clearly, a plot of
computational cost vs. N logN is roughly linear. As can be seen,
the cost for the construction of the SST along with the generation
of data pairs for progress index and annotation function is less
than that of the tree-based clustering. Fig. 5(A) implies that we can
identify basins in a data set composed of 8 × 106 snapshots with
a dimensionality of D = 273 in less than an hour on a single core
of a modern desktop machine. Fig. 5(B) shows the dependence of
computational cost on D. This is expected to be linear, since the
dimensionality of representation only matters for computations
of distance, the total number of which is roughly constant. This
expectation is confirmed by Fig. 5(B).

3. Results

3.1. Hydrology data for rivers near Portland, Oregon

While n-butane is a perfect example for the algorithm, real
world data setsmaynot be, especially if they describe the evolution
of a complex system that is not fundamentally stochastic in nature.
We constructed an example from hydrology parameters measured
at various river sites near Portland, Oregon, USA, over a period
of about 5 years. Measured quantities include pH, conductance,
discharge (volume flux), temperature, and oxygen content. River
parameters are expected to be influenced by ambient weather,
specific climatic events such as snowmelt, and local geography.
Seasonal patterns generate data sets that are likely to show
recurrence (similar seasons in subsequent years give rise to
similar river conditions), but that are not random. These data are
challenging for the following reasons:

1. Measurements are performed with low accuracy and may con-
tain outliers caused by malfunctioning devices or short-term,
local contaminations.

2. Subtle trends observed over multiple years may render condi-
tions locally more similar than compared to analogous times in
other years, and recurrence of conditions is weak overall due
to the (small) number of years in the data set. This challenges
the annotation function that relies on good mixing within a
basin.

3. Most measured parameters produce uninformative histograms
on their own. In conjunctionwith the first point, this challenges
the geometrical separability of these data, i.e., the pairwise dis-
tance spectrum is expected to be relatively featureless (see
Fig. S.3).

We note that the data set is small enough (N = 87 840 and D =

15) that we can use the exact algorithm. Fig. 6 plots the progress
index annotated with both c and l, and the kinetic annotation
confirms the challenging nature of these data. Profiles are sparse
in well-resolved features and allow the identification of two larger
basinswith unclear size alongwith a number of smaller basins, e.g.,
for values of the progress index around 1.6 ·104 or 8 ·104. The color
annotation of the input data supports this interpretation. These
data were normalized, centered, and subjected to noise before
being fed into the algorithm (see S.1.4.3). Red colors indicate high
values, and hence the first major basin is a putative warm season
with high water temperatures, high conductivity (σ ), low river
levels, and low oxygen concentrations. The secondmajor basin (up
to 4.5 · 104) corresponds to a putative cold season with generally
inverted parameters. We can confirm these assignments by using
the time annotation of the progress index shown in the bottom
part of Fig. 6. These highlight that the data in the first basin indeed
come from the warmest and driest months (July–September) and
that the data in the second basin come from the extended winter
months (November–April).

The rest of the plot reveals a few well-defined regions of
homogeneous conditions that often come from specific years.
These are not always well-resolved in terms of functions c or l,
and one important problem contributing to this lack of resolution
is lack of recurrence. This is seen most clearly for winter and
spring of 2008 found at progress index values of 5 to 6 · 104 and
indicated by linear correlation of progress index and real time.
Cut values become nearly invariant, which limits the use of these
annotation functions for nonrecurrent, but kinetically partitioned
data. As a counterexample, themid-summermonths of 2008 found
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Fig. 6. Application of the exact algorithm to hydrology data. The annotation
functions, c and l with a fixed nl = 10 000, derived from the progress index are
plotted against the progress index as black and green curves, respectively. The data
for function l were scaled and shifted as indicated in the axis label. The implied
unit of time on the y-axis is a single snapshot, i.e., 30 minutes. A color annotation
similar to the one in Figs. 2 and 3 is shown alongwith these plots. Data are centered
and normalized as described in the SI, S.1.4.3, and a uniform color scheme is used
(legend in the upper left-hand side). Data come from four stations (that are offset
visually) and encompass different measurements as indicated on the right-hand
side. The lower half of the figure annotates the progress index temporally with an
additional monthly color codemeant to highlight the yearly patterns (legend in the
upper right-hand side). Finally, circles highlight barriers identified via a measure of
the locality of the progress index as described in Fig. S.4. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

at progress index values near 8 · 104 yield water conditions with
recurrence according to both c and l. If c and l fail, it is also possible
to identify barrier regions via the locality of the progress index that
is known from the MST. Essentially, each snapshot is added to the
set S on account of a specific edge to a specific ‘‘parent’’ vertex,
whose position in the progress index is known. If this position is
not nearby (not local), we can speculate that we have encountered
a barrier region (see Fig. S.4). Putative barriers derived this way are
plotted as circles in Fig. 6 and seem to offer potential in delineating
basins for nonrecurrent data. Finally, a more detailed analysis is
given in S.2.1. In particular, Figs. S.5 and S.6 explore differences
between the exact and approximate algorithms. The latter is used
exclusively for the final data set.

3.2. Reversible folding of a β-sheet miniprotein

As a final test, we apply the approximate algorithm to a com-
plex system analyzed extensively in previous works [32,33,29].
Beta3S is a 20-residue polypeptide that undergoes reversible fold-
ing transitions at 330 K on the high ns time scale if a suitable
computational model is utilized [34]. The native basin is a three-
stranded β-sheet, but various other enthalpic basins are known
and populated (for further details, see SI, S.1.4.2).

Fig. 7 shows representative results for the approximate
progress index coupled to the simple annotation function, c . The
first thing to note is the strong similarity of the plot in Fig. 7 to cut-
based free energy profiles based on the same data set [32,33,29]
(see also Figs. S.7 and S.8). The native basin, which the start-
ing snapshot is part of, encompasses about 35% of the data. Sec-
ondary structure, i.e., DSSP annotations [35] to the progress in-
dex are shown as well in a color plot for individual residues.
These confirm the correct topology for a three-stranded β-sheet.
For large values of the progress index, we find a basin comprised
of an ensemble of structures rich in α-helix. In between, there
is a mix of smaller, enthalpic basins that usually share part of
Fig. 7. Application of the approximate algorithm to Beta3S. The distance function in
use is the coordinate root mean square deviation computed over backbone oxygen
and nitrogen atoms of residues 3–18 after pairwise alignment. The progress index
obtainedwithNg = 200 is plotted against annotation function c . For each trajectory
snapshot, we also computed DSSP annotations [35] that are presented as a color
annotation (legend on top, one-letter codes for individual amino acids on the right-
hand side). Only every 20th snapshot is shown to keep the size of the original
vector image manageable. Lastly, we show a further kinetic annotation by plotting
independent τMFP values to the native basin (small values of the progress index)
for selected snapshots. The selected snapshots are the centroids of those nodes in
the MSM used to generate the τMFP values, which encompass at least 10 snapshots
(about 8000). Testswith values forNg as small as 20 yielded comparable results (not
shown). For plotting details, please refer additionally to the caption of Fig. S7.

their topology with the native state, and entropic regions without
consistent order formation. Based on the DSSP annotation, it ap-
pears that function c resolves all structurally homogeneous sets of
microstates suggesting that the system exhibits sufficient recur-
rence over the aggregate sampling time of 20 µs. This holds even
for tiny basins such as the one seen at values of the progress index
just past 6 ·105. Fig. S.8 shows the annotation with l and highlights
that c provides sufficient resolution for this system.

There are two questions we want to address. First, are the
resolved basins in fact kinetically homogeneous? To this extent,
we constructed a network of conformational transitions based on
the tree-based clustering and conformational root mean square
deviations exactly as described in prior work [29] (this is also
the exact same clustering used for data preorganization when
generating the SST). Using a target node in the native basin as
reference, we proceeded to determine the τMFP values for all other
nodes. If a node contains at least 10 snapshots, the value for τMFP is
plotted in Fig. 7 for all those snapshots at their respective positions
in the progress index. This simple annotation confirms that – at
least in reference to the native basin – the basins identified by our
proposed approach are indeed kinetically homogeneous. To further
address this, Fig. S.7 shows a correlation analysis of the cut-based
free energy profile based on the same clustering with the results in
Fig. 7. The conclusions are the same. As a corollary, a lack of kinetic
homogeneity seen for example around values of the progress index
of 5 · 105 or 8 · 105 correlates with parts of the profile, for which c
does not indicate the presence of a basin.

The second question is with regard to the ordering of the
basins by the progress index. The annotation with τMFP makes the
point that there is weak correlation between a distance in the
progress index and a distance in kinetics (see also Fig. S.7). This
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is expected, since the sampling density in transition regions no
longer represents a ruler for kinetic distance to a specific basin
once multiple basins have been incorporated into set S. In analogy
to cut-based free energy profiles, this also means that neighbor
relations are not necessarily meaningful for larger values of the
progress index as discussed in the context of Fig. 2. In summary,
for this more appropriate data set compared to 3.1, the proposed
scheme provides exactly the information we expected to obtain
with no obvious limitations or errors in annotation.

4. Discussion and conclusions

In this contribution, we have presented a new algorithm for
sorting and annotating sets of data that are the result of contin-
uous evolution. The sorting component, i.e., the progress index, is
derived in both an exact form with modest computational com-
plexity and in an approximate form that is computationally effi-
cient and scalable to very large data sets (see Fig. 5). Such scalable
algorithms are increasingly sought after due to the routine gener-
ation and storage of massive trajectories given present day com-
puting resources [6,36,2]. The second component, i.e., the various
annotation functions used throughout, generally scale asO(N) and
are of lesser cost than the progress index generation. The two com-
ponents combine to yield one-dimensional plots that are able to
distinguish kinetically grouped sets of microstates in complex sys-
tems that exhibit sufficient recurrence (mixing) both within and
amongst basins. There are no parameters controlling size, number,
or other properties of basins, and the algorithm is agnostic beyond
the fact thatwe have to define a pairwisemeasure of similarity.We
believe that the combination of minimal user input and high com-
putational efficiency makes our proposed scheme a useful one.

The total runtime for generating Fig. 7 was on the order of min-
utes for a trajectory of 106 snapshots. This highlights the utility of
the approach in quickly and reliably partitioning a complex sys-
tem into an annotated set of basins. We are unaware of alterna-
tive methods offering comparable amounts of information at this
cost. The strengths of the approach rest on the use of all snapshots,
i.e., the lack of any binning or other a priori grouping (the auxiliary
clustering is for efficiency only (see 2.3), and has no direct bear-
ing on the results (see Fig. S.6)). The kinetic annotation functions,
c and l (see 2.1 and 2.2), operate relative to the time resolution of
the data and will correctly lump all snapshots together if the lat-
ter is too coarse (see Figs. 3 and S.2). Actual failure is possible if
small basins are placed in regions of high inherent curvature (see
Fig. 3). This is an issue of the signal-to-noise ratio, and we expect it
to be corrected by increasing the amount of data or using a different
starting point. Any lack of recurrence is a potentially more critical
issue and is encountered in Fig. 6. However, it need not result from
non-stochastic evolution of the system, but can also result from an
inappropriately high dimensionality in representation. In the latter
case, the point density becomes so low everywhere that basins are
no longer identifiable.

The last comment above implies that the utility of data process-
ing algorithms of this type rests on the appropriateness of the dis-
tance function. This is a very fundamental problem, but there is
little rigorous work comparing combinations of different classes of
distance functions coupled to different representations of a com-
plex system [37]. Amore active and closely related area of research
is that of finding suitable reaction coordinates for complex sys-
tems that preserve correct, coarse-grained kinetics and thermody-
namics [38,33,39,40]. Viewed as a simple grouping scheme [23],
our approach offers the advantage over the majority of algorithms
that there is no parameter controlling the number or size of clus-
ters. Moreover, comparable groupings are normally the result of
a two-stage process: efficient, fine-grained clustering is followed
by suitable refinement [41]. Our approach shares a strong formal
similarity with the OPTICS clustering algorithm that also utilizes
a combination of sorting and annotation [42]. We emphasize that
few algorithms in this class operate at such low time complexity,
e.g., [43,44,29]. The reliance on geometric continuity during system
evolution is shared explicitly with methods computing eigenvec-
tors of a kernel-based density estimate given the full O(N2) Lapla-
cian matrix, i.e., diffusion maps [15,39]. These methods not only
require choosing a kernel function (or at least parameter(s) for it),
but the reliance on the Laplacian matrix renders them infeasible
for data sets exceeding∼105 snapshots. Lastly, we briefly mention
path sampling approaches. With suitably chosen end points, these
methods can yield comparable information [45–48], because they
directly probe kinetic connectivity of different sets of microstates.
Of course, they are conjoined with the sampling protocol itself, i.e.,
they are not pure analysis schemes applicable to any continuous
data set, and require significant human input. This is also true for
metadynamics [49] andmany related approaches, e.g., a recent ap-
proach to sequential basin discovery [50].

The algorithm as described here has been implemented in
the CAMPARI software package [51], and the current develop-
ment version is available from the authors on request (cam-
pari.software@gmail.com). Ongoing work is targeting three areas.
First, can we automatize feature selection using an appropriate
criterion of optimality, i.e., is it possible to eliminate the need to
manually define a distance function? Second, for the localized cut
function, l, is there an iterative, but efficient procedure that deter-
mines a suitable value of nl(i) for all snapshots? The current restric-
tion to one or a few values of nl clearly lacks general utility. Third,
can we identify additional annotation functions that can be quan-
titatively related to relevant time scales of the system?We believe
that addressing these questions opens up fruitful avenues for fu-
ture research toward routine analysis of large data sets continuous
in time.

Acknowledgments

We thank Dr. Ting Zhou for sharing data on Beta3S used for
runtime analysis [52]. This work was supported by a grant of the
Swiss National Science Foundation to A. C.

Appendix. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2013.06.009.

References

[1] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal,
D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline,
M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta,
A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo,
M. Tadel, ROOT—A C++ framework for petabyte data storage, statistical
analysis and visualization, Comput. Phys. Comm. 180 (2009) 2499–2512.

[2] D. Hasenkamp, A. Sim, M. Wehner, K. Wu, Finding tropical cyclones on a
cloud computing cluster: using parallel virtualization for large-scale climate
simulation analysis, in: J. Qiu, G. Zhao, C. Rong (Eds.), 2010 IEEE Second
International Conference on Cloud Computing Technology and Science,
Indianapolis, IN, USA, November 30–December 3, 2010, CloudCom, IEEE
Computer Society Conference Publishing Services, LosAlamitos, CA,USA, 2010,
pp. 201–208.

[3] E.E. Schadt, M.D. Linderman, J. Sorenson, L. Lee, G.P. Nolan, Computational
solutions to large-scale data management and analysis, Nature Rev. Genet. 11
(2010) 647–657.

[4] K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, How fast-folding proteins
fold, Science 334 (2011) 517–520.

[5] G. Settanni, F. Rao, A. Caflisch, Φ-value analysis by molecular dynamics
simulations of reversible folding, Proc. Natl. Acad. Sci. USA 102 (2005)
628–633.

[6] V. Springel, S.D.M. White, A. Jenkins, C.S. Frenk, N. Yoshida, L. Gao, J. Navarro,
R. Thacker, D. Croton, J. Helly, J.A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, F. Pearce, Simulations of the formation, evolution and
clustering of galaxies and quasars, Nature 435 (2005) 629–636.

mailto:campari.software@gmail.com
mailto:campari.software@gmail.com
mailto:campari.software@gmail.com
http://dx.doi.org/10.1016/j.cpc.2013.06.009
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref1
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref2
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref3
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref4
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref5
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref6


N. Blöchliger et al. / Computer Physics Communications 184 (2013) 2446–2453 2453
[7] Y. Wang, J.Y.-J. Shyy, S. Chien, Fluorescence proteins, live-cell imaging, and
mechanobiology: seeing is believing, Annu. Rev. Biomed. Eng. 10 (2008) 1–38.

[8] B.P. Kirtman, C. Bitz, F. Bryan, W. Collins, J. Dennis, N. Hearn, J.L. Kinter III,
R. Loft, C. Rousset, L. Siqueira, C. Stan, R. Tomas, M. Vertenstein, Impact of
ocean model resolution on CCSM climate simulations, Clim. Dyn. 39 (2012)
1303–1328.

[9] N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis
of complex systems, Phys. Rep. 438 (2007) 237–329.

[10] I.G. Kevrekidis, C.W. Gear, G. Hummer, Equation-free: the computer-aided
analysis of complex multiscale systems, AIChE J. 50 (2004) 1346–1355.

[11] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, U. Alon, Coarse-graining
and self-dissimilarity of complex networks, Phys. Rev. E 71 (2005) 016127.

[12] J.D. Halley, D.A. Winkler, Classification of emergence and its relation to self-
organization, Complexity 13 (2008) 10–15.

[13] M. Sips, B. Neubert, J.P. Lewis, P. Hanrahan, Selecting good views of high-
dimensional data using class consistency, Comput. Graph. Forum 28 (2009)
831–838.

[14] M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral
methods for clustering, Pattern Recognit. 41 (2008) 176–190.

[15] B. Nadler, S. Lafon, R.R. Coifman, I.G. Kevrekidis, Diffusion maps, spectral
clustering and reaction coordinates of dynamical systems, Appl. Comput.
Harmon. Anal. 21 (2006) 113–127.

[16] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (2000) 2323–2326.

[17] S.V. Krivov, M. Karplus, One-dimensional free-energy profiles of complex
systems: progress variables that perserve the barriers, J. Phys. Chem. B 110
(2006) 12689–12698.

[18] F. Noé, I. Horenko, C. Schütte, J.C. Smith, Hierarchical analysis of conforma-
tional dynamics in biomolecules: transition networks of metastable states,
J. Chem. Phys. 126 (2007) 155102.

[19] J.D. Chodera, N. Singhal, V.S. Pande, K.A. Dill, W.C. Swope, Automatic discovery
ofmetastable states for the construction ofMarkovmodels ofmacromolecular
conformational dynamics, J. Chem. Phys. 126 (2007) 155101.

[20] S. Muff, A. Caflisch, Kinetic analysis of molecular dynamics simulations reveals
changes in the denatured state and switch of folding pathways upon single-
point mutation of a β-sheet miniprotein, Proteins: Struct. Funct. Bioinform.
70 (2008) 1185–1195.

[21] J.M. Carr, D.J. Wales, Folding pathways and rates for the three-stranded
β-sheet peptide Beta3s using discrete path sampling, J. Phys. Chem. B 112
(2008) 8760–8769.

[22] A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative
analysis, Phys. Rev. E 80 (2009) 056117.

[23] R. Xu, D. Wunsch II, Survey of clustering algorithms, IEEE Trans. Neural Netw.
16 (2005) 645–678.

[24] A. Jain, D. Zongker, Feature selection: evaluation, application, and small sample
performance, IEEE Trans. Pattern Anal. 19 (1997) 153–158.

[25] B. Keller, X. Daura, W.F. van Gunsteren, Comparing geometric and kinetic
cluster algorithms for molecular simulation data, J. Chem. Phys. 132 (2010)
074110.

[26] W. Huisinga, C. Best, R. Roitzsch, C. Schütte, F. Cordes, From simulation
data to conformational ensembles: structure and dynamics-based methods,
J. Comput. Chem. 20 (1999) 1760–1774.

[27] D.J. Wales, Energy landscapes: some new horizons, Curr. Opin. Struct. Biol. 20
(2010) 3–10.

[28] C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev.
Modern Phys. 81 (2009) 591–646.

[29] A. Vitalis, A. Caflisch, Efficient construction ofmesostate networks frommolec-
ular dynamics trajectories, J. Chem. Theory Comput. 8 (2012) 1108–1120.

[30] M. Daszykowski, B. Walczak, D.L. Massart, Projection methods in chemistry,
Chemometr. Intell. Lab. Syst. 65 (2003) 97–112.

[31] J. Nešetřil, E. Milková, H. Nešetřilová, Otakar Borůvka on minimum spanning
tree problem, translation of both the 1926 papers, comments, history, Discrete
Math. 233 (2001) 3–36.

[32] S.V. Krivov, S. Muff, A. Caflisch, M. Karplus, One-dimensional barrier-
preserving free-energy projections of aβ-sheetminiprotein: new insights into
the folding process, J. Phys. Chem. B 112 (2008) 8701–8714.
[33] B. Qi, S. Muff, A. Caflisch, A.R. Dinner, Extracting physically intuitive reaction
coordinates from transition networks of a β-sheet miniprotein, J. Phys. Chem.
B 114 (2010) 6979–6989.

[34] P. Ferrara, J. Apostolakis, A. Caflisch, Thermodynamics and kinetics of folding of
two model peptides investigated by molecular dynamics simulations, J. Phys.
Chem. B 104 (2002) 5000–5010.

[35] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features, Biopolymers 22
(1983) 2577–2637.

[36] D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon,
C. Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo,
J.P. Grossman, C.R. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman,
C. McLeavey, M.A. Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler,
M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose machine for
molecular dynamics simulation, in: D. Tullsen, B. Calder (Eds.), Proceedings
of the 34th Annual International Symposium on Computer Architecture, San
Diego, CA, USA, June 9–13, 2007, ISCA’07, ACM, New York, NY, USA, 2007,
pp. 1–12.

[37] P. Cossio, A. Laio, F. Pietrucci, Which similarity measure is better for analyzing
protein structures in a molecular dynamics trajectory? Phys. Chem. Chem.
Phys. 13 (2011) 10421–10425.

[38] R.B. Best, G. Hummer, Reaction coordinates and rates from transition paths,
Proc. Natl. Acad. Sci. USA 102 (2005) 6732–6737.

[39] M.A. Rohrdanz,W. Zheng, M.Maggioni, C. Clementi, Determination of reaction
coordinates via locally scaled diffusionmap, J. Chem. Phys. 134 (2011) 124116.

[40] S.V. Krivov, Is protein folding sub-diffusive? PLoS Comput. Biol. 6 (2010)
e1000921.

[41] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering
method for very large databases, in: J. Widom (Ed.), SIGMOD’96: Proceedings
of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, QC, Canada, June 4–6, 1996, ACM Press, New York, NY, USA, 1996,
pp. 103–114.

[42] M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering
points to identify the clustering structure, in: J. Clifford, R. King (Eds.),
SIGMOD’99: Proceedings of the 1999 ACM SIGMOD International Conference
on Management of Data, Philadelphia, PA, USA, May 31–June 03, 1999, ACM
Press, New York, NY, USA, 1999, pp. 49–60.

[43] A. Hinneburg, D.A. Keim, Optimal grid-clustering: towards breaking the
curse of dimensionality in high-dimensional clustering, in: M.P. Atkinson,
M.E. Orlowska, P. Valduriez, S.B. Zdonik, M.L. Brodie (Eds.), Proceedings of the
25th VLDB Conference, Edinburgh, Scotland, September 7–10, 1999, Morgan
Kaufmann, San Francisco, CA, USA, 1999, pp. 506–517.

[44] R.L.F. Cordeiro, A.J.M. Traina, C. Faloutsos, C. Traina Jr., Halite: fast and scalable
multi-resolution local-correlation clustering, IEEE Trans. Knowl. Data Eng. 25
(2013) 387–401.

[45] P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Transition path sampling:
throwing ropes over rough mountain passes, in the dark, Annu. Rev. Phys.
Chem. 53 (2002) 291–318.

[46] D.J. Wales, Discrete path sampling, Mol. Phys. 100 (2002) 3285–3305.
[47] W. E, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for

computing the minimum energy paths in barrier-crossing events, J. Chem.
Phys. 126 (2007) 164103.

[48] P. Faccioli, Characterization of protein folding by dominant reaction pathways,
J. Phys. Chem. B 112 (2008) 13756–13764.

[49] A. Laio, M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA
99 (2002) 12562–12566.

[50] Y.V. Sereda, A.B. Singharoy, M.F. Jarrold, P.J. Ortoleva, Discovering free energy
basins for macromolecular systems via guided multiscale simulation, J. Phys.
Chem. B 116 (2012) 8534–8544.

[51] A. Vitalis, A. Steffen, N. Lyle, A.H. Mao, R.V. Pappu, Campari v1.0,
http://sourceforge.net/projects/campari (accessed 30.10.12).

[52] T. Zhou, A. Caflisch, Free energy guided sampling, J. Chem. Theory Comput. 8
(2012) 2134–2140.

http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref7
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref8
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref9
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref10
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref11
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref12
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref13
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref14
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref15
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref16
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref17
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref18
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref19
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref20
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref21
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref22
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref23
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref24
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref25
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref26
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref27
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref28
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref29
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref30
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref31
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref32
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref33
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref34
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref35
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref36
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref37
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref38
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref39
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref40
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref41
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref42
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref43
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref44
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref45
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref46
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref47
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref48
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref49
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref50
http://sourceforge.net/projects/campari
http://refhub.elsevier.com/S0010-4655(13)00203-8/sbref52

	A scalable algorithm to order and annotate continuous observations reveals the metastable states visited by dynamical systems
	Introduction
	Methods and proof of concept
	The exact algorithm
	Illustration with labeled  n -butane
	An approximate algorithm operating in near-linear time

	Results
	Hydrology data for rivers near Portland, Oregon
	Reversible folding of a  β -sheet miniprotein

	Discussion and conclusions
	Acknowledgments
	Supplementary data
	References


