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Background: For biomacromolecules or their assemblies, experimental knowledge is often restricted to specific
states. Ambiguity pervades simulations of these complex systems because there is no prior knowledgeof relevant
phase space domains, and sampling recurrence is difficult to achieve. In molecular dynamics methods,
ruggedness of the free energy surface exacerbates this problem by slowing down the unbiased exploration of
phase space. Sampling is inefficient if dwell times in metastable states are large.
Methods:We suggest a heuristic algorithm to terminate and reseed trajectories run inmultiple copies in parallel.
It uses a recent method to order snapshots, which provides notions of “interesting” and “unique” for individual
simulations. We define criteria to guide the reseeding of runs from more “interesting” points if they sample
overlapping regions of phase space.
Results: Using a pedagogical example and anα-helical peptide, the approach is demonstrated to amplify the rate
of exploration of phase space and to discover metastable states not found by conventional sampling schemes.
Evidence is provided that accurate kinetics and pathways can be extracted from the simulations.
Conclusions: The method, termed PIGS for Progress Index Guided Sampling, proceeds in unsupervised fashion,
is scalable, and benefits synergistically from larger numbers of replicas. Results confirm that the underlying
ideas are appropriate and sufficient to enhance sampling.
General Significance: In molecular simulations, errors caused by not exploring relevant domains in phase space are
always unquantifiable and can be arbitrarily large. Our protocol adds to the toolkit available to researchers in reduc-
ing these types of errors. This article is part of a Special Issue entitled “RecentDevelopments ofMolecularDynamics.”

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The microscopic foundation of life sciences is an appreciation of
biomolecules as complex systems. Chemical reactions, binding and
assembly phenomena, and conformational transitions can all span a
broad range of time and length scales. The desire to understand these
processes has produced an unprecedented amount of data obtained
using many different techniques. Among these, computer simulations,
while marred by the caveat that they model rather than project a
physical reality, have been a useful tool due to the level of resolution
they offer [1,2]. Indeed, recent work has convincingly demonstrated
the appropriateness and potential accuracy of the underlying physical
models [3]. Molecular dynamics (MD) simulations [4], the topic of this

special issue, are the most common type of computer simulations
used for biomolecules. They propagate suitable equations of motion
numerically. Auxiliary constructs, such as thermostats, may be required
to produce well-defined, thermodynamic ensembles, most often the
canonical (NVT) or isothermal-isobaric (NPT) ones.

A single, continuous MD trajectory is often expected to yield correct
equilibrium statistics and realistic dynamics, although this is far from a
trivial issue, in particular with respect to the numerical discretization
[5]. Faithful dynamics can cause undesired precision problems if the
underlying rates are low, i.e., simulations that are too shortmay provide
limited information carrying large biases toward the initial state. If a
system cannot traverse all relevant, metastable states on the simulation
time scale, computed time averages will differ from correct canonical
averages. Pragmatically, initial portions of simulations are discarded
heuristically as “equilibration periods,” and statements about simula-
tion precision must be restricted to specific observables [1]. Due to
the above, a canonical MD sampling approach (CS) will often utilize
resources inefficiently, and this inefficiency has motivated the develop-
ment of enhanced sampling methods over the past few decades [6–9].

It is well beyond the scope of this introduction to provide an over-
view of all enhanced samplingmethods, andwe apologize for inevitable
omissions. In the following, we highlight conceptual aspects of different
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classes of methods. Better MD integrators and in particular multiple
time step methods can be viewed as advanced sampling methods as
they allow larger (average) time steps to be used [5,10]. The same is
true for efficient protocols for constrained dynamics [11,12] or mixed
numerical and analytical schemes [13]. Dynamics can also be altered
by scaling masses without introducing configurational bias [14].

We next want to mention knowledge-based approaches of two
different kinds. The Rosetta [15] and similar methods essentially utilize
database-derived, conformational biases in conjunction with hybrid
sampling protocols to explore large regions of putatively relevant
phase space. For polypeptides, this can be useful if the primary goal
is to identify possible states of interest. Systematic coarse-graining
[16,17] is a general strategy to achieve better sampling by increasing
the ratio of simulation and CPU times and often also by smoothing the
ruggedness of the potential energy surface (PES). One of its main
challenges lies in maintaining protocols for subsequent fine-graining
that could then yield physically realistic ensembles at the resolution of
interest. Both ideas have been coupled to the replica exchange (REX)
method discussed below [18,19]. We mention this aspect to highlight
the difficulty in delineating classes of enhanced sampling methods,
which often combine existing elements and ideas in innovative ways.

Rather than the smoothing incurred by coarse-graining, direct mod-
ifications to the PES can be used to control populations and exploration
rates also for fine-grained systems. Two highly successful examples are
umbrella sampling [20] and metadynamics [21] (or more generally, flat
histogrammethods) [22], both of which are usually meant to extract an
estimate of an unbiased probability distribution or a density of states
along a reaction coordinate. Steered MD simulations [23] use force
rather than a potential, but can be viewed as comparable. All methods
are excellent for generating potentials of mean force [24] that may
even allow the prediction of coarse-grained dynamics. The major
caveats of this class of methods are as follows. First, choice of reaction
coordinates may not be straightforward. Second, there is no control
over directions orthogonal to the chosen reaction coordinates [25].
This is a fundamental problem of low-dimensional projections, viz.,
different, kinetically and geometrically distal states mapping to the
same value of the reaction coordinate. Third, the trajectories obtained
are of limited scope because populations, microscopic rates, and path-
ways are all altered by the modifications to the PES. Detailed kinetic
information is lost, and the effective, statistical weight of a large
fraction of the data may be negligible. In practice, for large systems,
the snapshot-based reweighting to recover equilibrium ensembles
is too noisy [26]. This issue underlies similar approaches such as
the accelerated molecular dynamics method [27].

Among multicanonical techniques, the most prominent one is the
REX method [28,29], and most often temperature is used to globally
scale the PES. By careful algorithm design, and by partitioning the data
by temperature, each subset of the data can be analyzed as a bona fide
canonical ensemble. The idea of the method is that excursions into
higher temperatures facilitate barrier crossings, despite the absence of
a dedicated geometric coordinate [30].When following data at constant
temperature, the perturbations incurred by the REX method consist
entirely of swapping in compatible structures from neighboring condi-
tions. It is precisely this design that gives the method its broad appeal
[31] but also limits its price-to-performance ratio because the spacing
and number of conditions to use cannot be considered free choices
[32–34]. If data are required only at a single condition, multiple
independent runs may utilize resources more efficiently. Due to its
widespread use and simplicity, we choose the REXmethod for compar-
ison purposes in this contribution. Relative to CS, REX poses difficulties
when inferring kinetics and pathways [35,36] because rigorously only
those stretches of the trajectories in between swaps can be mined for
this purpose [37].

An elucidation of pathways is of great interest for obtaining a
mechanistic understanding of complex systems. Given a notion of two
states to connect, techniques like transition path sampling [38], the

nudged elastic band method [39], or the string method [40] are excep-
tionally powerful tools to understand pathway heterogeneity, predict
net rates, etc. Imposing a preconceived geometry on a path ensemble
may be beneficial [41,42]. If the system displays a separation of time
scales, it may be possible to construct Markov state models (MSMs)
[43,44], which coarse-grain phase space into a set of kinetically homo-
geneous or metastable states. The initial set of states is often inferred
from long CS simulations or some of the enhanced sampling methods
outlined above [45]. The generalization of transition path sampling
approaches to include all states in a network, i.e., the combination of
these two ideas [46], can potentially provide a comprehensive picture
of the thermodynamics and kinetics of a complex system at a given
condition and at the level of the resolution of the states of the MSM.
In this contribution, we suggest a method that addresses two of the
underlying goals, viz., obtaining realistic pathway information and
achieving fast phase space coverage.

In order to preserve pathway information, it seems necessary to
sample from an unaltered PES. A possible strategy is to guide sampling
by simply restarting simulations from interesting points, a process we
refer to as reseeding. In distributed computing, a fluctuation-based heu-
ristic was suggested to monitor relevant transitions [47]. Trajectories
are selectively reseeded from those points indicating that a relevant
transition has occurred. Recent work has used kinetic reaction coordi-
nates to guide sampling toward new states [48,49]. Here, we suggest a
different heuristic that rewards uniqueness of the current sampling
domain of individual trajectories. The scheme is scalable, unsupervised,
and explicitly parallel. The decision about reseeding a given trajectory
depends on the regions of phase space sampled by other trajectories.
The notion of uniqueness as a guide makes it most similar to the
recentWExplore method [50] that defines states by spatial discretization
[51,52] to inform the reseeding procedure.

We term our approach PIGS (Progress Index-Guided Sampling) as it
relies on an efficient ordering of a slice of simulation snapshots, the
so-called progress index [53]. The remainder of the text is structured
as follows. We first introduce the algorithm and simulation protocols.
We then provide a detailed set of results evaluating the performance
of the scheme on two systems, viz., a 1D model and the FS peptide
[54] in implicit solvent. We are able to demonstrate that PIGS, while
minimally invasive at the level of pathways, amplifies the rate of explo-
ration, i.e., we detect several metastable states that are not reached by
either REX or CS on the same time scale. By definition, PIGS ensembles
are thermodynamically biased, and we do not consider refinement or
reweighting here. This issue is, among others, discussed in the final
section of this manuscript.

2. Materials and methods

In this section, we introduce the algorithm and describe the general
setup and sampling protocols.

2.1. The PIGS algorithm

Consider a set of Nr molecular simulations (replicas) of exactly
the same system and under the same conditions that are propagated
by a given base sampling algorithm, e.g., CS. The stochastic sampling
algorithms we use here are either Metropolis Monte Carlo or Langevin
dynamics. We set a deterministic interval, fp, for attempting to reseed
up to Nr–Np of the simulations with the final configuration (machine
precision) of any of the Np remaining replicas. The decision whether to
reseed a replica or not relies on a heuristic that utilizes data from all
replicas and is history-free, i.e., only data from the last fp steps enter
the analysis. The number of snapshots to use per replica for an interval
of length fp is constant and referred to as nO throughout. Thus, the
scheme is scalable and explicitly parallel. It is easy to recognize that
independent runs using the base sampler are obtained if Nr = Np or if
Nr = 1. As we will see, the heuristic is designed as an unsupervised
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learning protocol meant to optimize coverage while using as few
perturbations to the base sampler as possible. This may not always be
a useful motivation, and the protocol can be adjusted to reflect changes
in motivation.

2.1.1. Reseeding heuristic
The heuristic used in this manuscript is aimed to avoid redundant

sampling of the same area of phase space by several replicas. For sys-
tems with either too much or too little degeneracy, this may not be an
appropriate choice. The notion of degeneracy is defined only for the
level of representation chosen, i.e., it can be arbitrarily focused on
parts of the system, such as a flexible loop in a protein. The observations
from all replicas are collected and ordered by a recent algorithm operat-
ing in near-linear time [53]. The ordered sequence, or progress index,
corresponds to a specific path through an approximation to the mini-
mum spanning tree. The path is obtained by always adding the closest
available vertex. This corresponds to always adding the snapshot that
has the smallest distance to any snapshot added previously. Distance
is taken as the Euclidean distance for the chosen representation,
e.g., dihedral angles. The algorithm corresponds to an unsupervised
protocol stepping through regions of high sampling density one after
another. The progress index contains data from all replicas, and the
origin of each observation is known. We can therefore rank the final
snapshots of each replica by the following criteria:

(a) The position in the progress index. Positions toward the end are
more likely to be associated with low density (barrier) regions
and to not correspond to the regions that are currently the
most populated ones. This is because the starting snapshot is
always taken as the representative of the largest cluster of an
auxiliary clustering of the current data slice.

(b) The distance on account of which it was added. This distance is
the shortest one to any other snapshot previously added. Long
distances are another indicator of being in a low density region.

(c) The smallest distance to any other final snapshot. This is an
indicator of uniqueness as related conformations tend to appear
in close proximity in the progress index.

All 3 quantities are sorted in decreasing order. We construct a com-
posite rank, ζ(R), as the sums of the individual ranks, and the replicas
with the smallest composite ranks are assumed to be located in interest-
ing regions of phase space. Since the goal is to improve phase space
coverage, a conformation is deemed interesting if it is in a region that
has low sampling density and is not explored by other replicas. The
top Np replicas by composite rank are guaranteed to continue unper-
turbed sampling. For every remaining replica, RY, we randomly pick
one of the top Np replicas, GX, with uniform probability and evaluate:

p RY→GXð Þ ¼ ζ RYð Þ−ζ GXð Þ½ �= Δζmax þ 1ð Þ: ð1Þ

Here, Δζmax is the maximum difference in summed ranks across all
replicas. If a random number drawn uniformly from the unit interval
is less than the probability in Eq. (1), the reseeding is putatively accept-
ed. Note that the trajectory of a reseeded run is irrevocably terminated.
Because the composite rank of thefinal snapshotsmay be an incomplete
indicator of “interesting” we currently perform an additional check.
Specifically, a reseeding accepted via Eq. (1) may still be rejected if the
difference of the 25% and 75% quantiles (1st and 3rd quartiles) of the
snapshots of RY in terms of their positions in the progress index is less
than nO. This rule is insensitive to outliers and measures progress
index locality. If locality is high, we can infer that the snapshots from
replica RY form a relatively unique subset, which is the motivation for
the rejection of the reseeding.

2.1.2. Scalability
For scaling reasons, we assume that each of the Nr replicas collects a

fixed number of observations of the system, nO, in memory over any

given stretch of fp steps. Thismeans that the total size of the data collect-
ed over a single stretchwill scale atmost linearly withNr. Therefore, the
cost of the reseeding scheme can be kept constant if we employ a
parallelizable algorithm that operates in linear time. We currently com-
pute the progress index and reseedingheuristic on a single node, and for
this manuscript the parameters are such that the overall cost is small
enough to not strongly affect the overall performance. Note that our dis-
cussion of parallelism is completely independent of any domain decom-
position one may use to speed up the base sampler for every replica. For
systems with too many degrees of freedom of little interest
(e.g., simulations in explicit water), it is practically inevitable to use a re-
duced representation of the system that discards these degrees of free-
dom. This is not a particular feature of our protocol, however, and
common choices such as coordinates of subsets of atoms or dihedral
angles can all be used. We emphasize that there is no scaling issue with
system size as the analysis scheme scales more favorably with the num-
ber of atoms than the base sampler in all but trivial cases. After the heu-
ristic presented in Section 2.1.1 has been evaluated, the observations in
memory are deleted, i.e., the history is forgotten completely. The algo-
rithm itself poses no I/O requirements whatsoever. Because we restrict
reseedings to thefinal configurations, the complete information required
for reseeding a given replica is available in the systemmemory of a differ-
ent replica, and this includes velocities and all other quantities required
by the integrator in question. If we used a fully deterministic base sam-
pler, e.g., MD with a Nosé-type thermostat [55], a stochastic component
could be introduced by randomizing velocities after each successful
reseeding. This is required to avoid sampling of (nearly) identical trajec-
tories diverging solely because of numerical drift.

2.1.3. Parameters
The primary parameters are as stated, viz., Nr, fp and Np. We explore

all 3 for the model system and Nr for the FS peptide (see Results).
We note that Nr and fp are shared with the REX method. For the rank
analysis of final snapshots to make sense, nO should be large enough
(we havemost often used values in the hundreds). The choice of repre-
sentation as discussed in Sections 2.1.1 and 2.1.2 can be considered a
parameter as well. It is algorithmically relevant exclusively as the
distance function underlying the progress index construction. We
therefore expect that it can be used to guide phase space exploration
and coverage.We evaluate the performance of different representations
for the FS peptide. It is important to emphasize that the requirement to
represent the system at reduced dimensionality is shared with many
similar methods, e.g., in the definition of states for either transition
path sampling [38] or MSMs [43,46]. Lastly, the progress index requires
minor auxiliary parameters for controlling the quality of the spanning
tree and the preorganization of the data [53,56]. We do not consider
these parameters essential to the performance of the method, and no
sensitivity analyses are presented here.

2.2. Systems and simulation protocols

All simulations and most analyses were carried out with the
CAMPARI molecular simulation package (http://campari.sourceforge.
net), and the latest development version is available on request
(campari.software@gmail.com). Further analyses were scripted in R
and molecular graphics were generated using VMD [57].

2.2.1. Model system
We use a 1D model system to illustrate the PIGS algorithm. The

potential as shown in Fig. S1 is constructed as a sum of Gaussians and
spans 500 position units. Barriers of height 5 kcal/mol at positions 0
and 500 contain the particle. A rugged landscape is constructed by
placing barriers of height 1 kcal/mol every 5 units except at multiples
of 25 where a higher barrier of 2 kcal/mol is used. The system models
diffusive evolution on a rugged PES with some hierarchy of time scales
due to the presence of two relevant barrier heights. There are 100
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well-defined free energy minima. The PIGS algorithm, at least as
presented above, is not designed to enhance sampling in difficult
systems with low degeneracy, i.e., with few relevant states separated
by high, enthalpic barriers.

The model is explored using a Metropolis Monte Carlo (MC) algo-
rithm at 250 K with step attempts drawn randomly and uniformly
from an interval of size 0.4. TheMC sampler ensures that ensemble con-
cerns and memory effects are avoided altogether. Data for the position
of the particlewere collected every 10 steps. Simulationswere generally
run for 106 steps and all replicas started from the same positions with
the particle set at 1.5. The particle never escaped the boundaries at 0
and 500. The exploration rate is measured by the time taken to reach
positions of increasing values. For all combinations of parameters, 10
independent runs were performed. Possible values for Nr were 8, 16,
32, and 64. In each caseNp values ofNr/4,Nr/2, 3Nr/4, andNrwere tested.
The latter corresponds to unperturbed MC sampling. Default values for
fp and nO were 1000 and 100, respectively. For specific settings, we
also systematically varied fp (1, 4, 16, and 64 × 103), nO (100, 25, 6–7,
1–2), and the temperature (150, 200, 250, and 300 K).

2.2.2. FS peptide
The FS peptide, acetyl-A5(AAARA)3A-N′-methylamide [54], was

simulated with the ABSINTH continuum solvent model [58] as in
prior work [59]. The ABSINTH model is based on its own interaction
model and Lennard–Jones parameters, and takes values for fixed,
partial charges and some bonded potentials from the OPLS-AA/L
force field [60]. Neutralizing counterions and a background of
~150 mMNaCl were also contained in the simulation droplet of radi-
us 40 Å. Here, we used Cartesian Langevin dynamics (CLD) as the
base sampler employing an impulse integrator according to Skeel
and Izaguirre [61]. Using SHAKE [11], we constrained all bond
lengths, i.e., the resultant data are comparable exactly to the “Flex.”
data in our prior work [59]. With a universal friction coefficient of
1 ps−1, an integration time step of 3 fs, and masses of hydrogen
atoms scaled by a factor of 4.0, we obtained robust integration de-
spite the presence of truncation cutoffs at 12 Å (mean temperature
errors of ~1 K). Polar interactions between groups carrying a net
charge were not truncated but computed at monopole resolution.
The simulation time per replica was 312 ns unless otherwise noted.
Trajectory data for every replica were collected every 1.5 ps. The
total data obtained exceed 107 snapshots. Simulations were run on
the Schrödinger supercomputer at the University of Zurich. Each
replica was run on a single core and took 6–8 days to complete.
Except for the data discussed in Section 3.2.5, all simulations
started from the same snapshot with the FS peptide forming a
straight α-helix.

We considered two types of PIGS runs by using two different
representations for the construction of the progress index [53], viz.,
the peptide's relevant dihedral angles (ϕ-PIGS) or a manually selected
set of interatomic distances between peptide atoms (r-PIGS). Details
are provided in the SI. We do not use the root mean square deviation
(RMSD) of Cartesian coordinates here because of the additional cost
introduced by the required alignment operator, and the r-PIGS data
are a suitable replacement. Parameters fp, Np, and nO were fixed and
set to values of 10,000, Nr/2, and 200, respectively. Nr was 32 for nearly
all the data presented. We compare these runs to CLD simulations
of identical set up and length. Allocation of resources is not a
straightforward task when trying to compare to REX. Here, we set
up 4 independent runs with 16 temperatures each that include 250
and 290 K (see SI for details). Swaps between 15 randomly selected
neighbor pairs were attempted every 10,000 steps (the same as the
reseeding interval for PIGS). We wanted to achieve the same total
number of cores (64) to obtain data at the two temperatures in all
4 cases. If we were interested in data at further temperatures, CLD
and PIGS but not REX would have to use additional resources.

2.3. Data analysis for the FS peptide

Unless noted otherwise, all analyses were restricted to the data
obtained at 250 K.

2.3.1. Exploration rate
In order to measure the exploration rate of the different sampling

protocols, we defined a two state model (0 or 1) at the residue level.
Given that we expect a high helix content for the FS peptide, we assume
a residue to be in state 1 if its ϕ- and ψ-angles fall into the α-helical
region of the Ramachandran plot and to be in state 0 otherwise. To
reduce the spurious counting of fluctuations, we also defined a
boundary region separating the two states that is shown in Fig. S5(b).
If any residue of interest was found to reside in this boundary region,
the corresponding structure did not count toward the exploration
rate. To keep the total number of different 1/0 sequences tractable,
and because of the low level of coupling of terminal residues, we
discarded both the first and the last two residues from the two-state
assignment. This yields 217= 131,072 possible different configurations.
For instance, (0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0) is the state inwhich
all 17 central residues of the FS-peptide are outside of the α-helical
region. The exploration rate is calculated as the number of unique
states visited as a function of time. It should be noted that these
results are sensitive to data set size, i.e., comparison between REX
and the other samplers is not straightforward. Here, we performed
bootstrapping on the CLD and PIGS data to overcome this difficulty.

2.3.2. Clustering
For clustering, the data from all 4 samplers (32 replicas at 250 K

from CLD, ϕ-PIGS, and r-PIGS each, and 12 replicas from 4 indepen-
dent runs at temperatures of 244, 250 and 256 K from the REX
protocol) were concatenated. This is the only analysis for which we
lump information from different temperatures together, and it is
meant to avoid that states sampled predominantly by REX are
missed simply on account of the low weight of the REX data. The
time resolution was 3 ps yielding ~1.1 × 107 molecular configura-
tions. We used a recently developed tree-based algorithm [56] par-
ticularly suited for the task as it scales linearly with data set size,
produces clusters that are free of overlap, and reflects local sampling
density. Additional information on required parameters is available
in Table S2. To measure the level of similarity among molecular
conformations, we used the same set of interatomic distances
underlying the r-PIGS runs (see Section 2.2.2 and Table S1).

At a size threshold of 1.8 Å, the algorithm yielded about 250,000
clusters. Of these, ~100,000 were made of single snapshots, and
10,700 had a population equal to or greater than 100. The representa-
tive snapshots of the 600 most populated clusters (representing
roughly half of the data set size) served as input data to an additional
grouping step, which we performed with a bottom-up, hierarchical
algorithm and a size threshold of 1.5 Å yielding 101 clusters. The
motivation for this step was to obtain a set of clusters that are
geometrically not directly adjacent to one another. For subsequent
analyses, we focused on the 101 clusters associated only with those
snapshots identified by the hierarchical scheme to be representative
of each of them.

2.3.3. Network and transition paths
The layout for a 2Dvisualization of the complexnetwork obtained by

the clustering was generated with the Kamada–Kawai algorithm [62].
Uniqueness of a cluster with respect to a sampling protocol was defined
as follows. Given the number of all snapshots constituting an individual
cluster, we identify the sampler that produced the trajectory containing
every snapshot in the cluster (CLD, r-PIGS, ϕ-PIGS, or REX). The number
for a given sampler is divided by the total number of snapshots to define
uniqueness with respect to a sampling protocol. A uniqueness of 100%
for CLDwouldmean that the cluster is sampled only in CLD trajectories.
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The smaller number of REX snapshots (all subsequent analysis is
restricted to a single temperature of interest and does not include
adjacent temperatures as in Section 2.3.2) was corrected by naive
rescaling of these data by a factor of 32/4. The edges of the network,
i.e., the observed transitions among the 101 clusters, were assigned by
parsing – replica by replica and protocol by protocol – the continuous
stretches within trajectories. For CLD, these stretches corresponded to
the entire trajectories of individual replicas, whereas for PIGS and REX
they corresponded to the stretches between two actual reseedings or
swaps. Clearly, these stretches also contain snapshots that donot belong
to any of the 101 clusters that we refer to by number in the following.
For transition path analyses, these points were all assumed to constitute
a global boundary region, and successful transition paths were those
segments connecting directly two of the states without encountering
any other numbered state in between. We also carried out principal
component analysis (PCA) [63] on the molecular conformations
sampled during four specific transitions that were well-populated by a
majority of algorithms. PCA was performed over a subset of trajectory
frames containing all snapshots for the two end states and all snapshots
on successful transition paths. The coordinates used for PCA were the
same interatomic distances used for the r-PIGS data set and in clustering
(see Table S1 for details).

3. Results

We have evaluated the PIGS algorithm for two different systems,
viz., a toy model and the FS peptide in implicit solvent. All data are
compared to the unperturbed base sampler (either MC or CLD). Both
systems explore phase space in a predominantly diffusive manner and

visit a significant number of metastable states, and we chose them
because of this. For the FS peptide, we also compare to the REXmethod.
We emphasize that there are no hidden costs associated with the PIGS
simulations, i.e., setup and post-processing are no different from the
other cases. Note, however, that post-processing would incur extra
costs if we attempted to reweight the resultant distributions for PIGS
(and REX [64]).

3.1. Model system

The model system (Fig. S1) serves primarily as a conceptual test for
the algorithm. We use it to illustrate parameter sensitivity in detail,
which is generally intractable for more complex systems. As described
in Section 2.2.1, the system, while always starting from the leftmost
state, uses an MC propagator with small step sizes to explore a 1D
rugged surface containing 99 metastable states. Because there is only a
single dimension, construction of the reseeding heuristic should not
be marred by dimensionality or accuracy concerns. Specifically, the
ordering of snapshots is expected to track the coordinate itself. Fig. S2
contains an example for the reseeding procedure that illustrates the
description in Section 2.2.1.

Comparison of Fig. 1(a)–(c) to (d) demonstrates that PIGS offers
a substantial speed-up of exploration for this toy model. This is
irrespective of the chosen value for Np. The shaded areas in the
plots represent the envelopes defined by 10 independent runs for a
given set of parameters. These estimates of data spread confirm
that differences are significant. As expected, small values of Nr offer
the fewest benefits throughout, and with 64 replicas the speed-up
is always maximal for the cases studied. We emphasize that this is

Fig. 1.Exploration rate for themodel system for different values ofNr andNp. There are 10 runs for each combination of parameters. For every run,we recorded the earliest sampling time at
which each of the 99 barriers has been crossed. This crossing time is taken as theminimum value across all replicas. The envelopes defined by the resultant 10 curves are indicated by the
shaded areas. Thick solid lines highlight the fastest exploration rates across all runs. (a)Data are shown forNp=Nr / 4 and 4 different values ofNr. (b) The same as (a) forNp=Nr / 2. (c) The
same as (a) for Np = 3Nr / 4. (d) The same as (a) for Np = Nr, which corresponds to unperturbed MC sampling.
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not a trivial consequence of the number of replicas used since, owing
to the diffusive nature of the system, there is no robust speed-up
seen in Fig. 1(d). Fig. S3, which plots the same data in a different
arrangement, highlights that there is no choice of Np that clearly
outperforms the explored alternatives. This result motivated the
use of Np = Nr / 2 for all simulations of the FS peptide.

We performed additional analyses of parameter sensitivity for the
model system. For these, we fixed the values of Nr and Np to 32 and 8,
respectively. In general, the variability of the speed-up seems to
decrease with decreasing Np, and this motivated the choice. While we
cannot study the effects of coarse-graining representation for the 1D
system, we did evaluate robustness with respect to the reseeding inter-
val, fp, and the amount of data collected per replica for construction of
the reseeding heuristic, nO (Section 2.1.1). As seen in Fig. S4, there is
surprisingly little dependency on both parameters over two orders of
magnitude. To us, this indicates that the heuristic is, under admittedly
favorable circumstances, able to efficiently diversify the sampling
domains of individual replicas, in particular if Nr becomes larger. This
implies that oneof our design goals, i.e., obtaining long enough stretches
of unperturbed evolution to study pathways, is achievable. We empha-
size that the length of continuous trajectory segments is often much
larger than fp.

We conclude the discussion of the toymodel by pointing out that all
speed-up depends on starting all replicas in the same position. This
mimics a common situation in molecular simulations of complex
systems, where a well-defined reference state, e.g., a crystal structure,
is given but no diverse ensemble of starting structures can be accessed
easily. Conversely, for polymers of low sequence complexity or mostly
disordered systems, this problem may indeed be solvable [65], and
this might override exploration benefits offered by PIGS or other
reseeding protocols.

3.2. FS peptide

At low enough temperatures, the FS peptide samples a diverse
ensemble of states rich in α-helical content. At 290 K, which is close to
the melting temperature for the model in use (see Fig. S5(a)), fluctua-
tions are large, and interconversion is fast. The straight α-helix is the
dominant helix-rich state. The size of fluctuations spanning coil-like
and compact helical states motivated inclusion of this temperature.
Conversely, at 250 K, collapse is a major driving force, and a diverse
ensemble of two-helix bundles and partially helical states is seen.
Under these conditions, interconversion is slowed down significantly.
Note that there is no explicit temperature dependency of parameters
and of course no phase transition in the implicit solvation model [58].
From prior work [59], we hypothesized that the time scale of the
simulations would be sufficient to obtain converged data at 250 K via
CLD, albeit barely so.

For the FS peptide, we compare PIGS to CLD and REX. As outlined
in Section 2.2.2, we tried to make the comparison fair in terms of re-
sources invested by utilizing a total of 64 replicas for each protocol. For
REX, this implies that a large portion of the data are not directly useful
as they correspond to temperatures different from 250 and 290 K. Im-
portantly, we did not perform any parameter optimization for PIGS.
The results provide indirect evidence regarding the robustness of the ap-
proach. The reseeding/swapping interval for PIGS and REX was 30 ps,
but, as shown below, the actual rate was much lower for PIGS. In con-
trast to the toymodel, the FS peptide does allowus to explore the impact
of geometric representation on the algorithm, and we obtained inde-
pendent data sets based on either interatomic distances (r-PIGS) or di-
hedral angles (ϕ-PIGS). The results are structured as follows. First, we
provide an overview of the system's complexity (Section 3.2.1). We
then quantify rates of exploration starting from a straight α-helix for
all samplers (Section 3.2.2). This is followed by an analysis of bias in
both configurational statistics (Section 3.2.3) and pathway information

(Section 3.2.4). We conclude with an investigation of the dependency
on starting structure (Section 3.2.5).

3.2.1. Conformational landscape at low temperature
To familiarize the reader with the system, Fig. 2 displays a network

representation of 101 clusters corresponding to distinct andhighly sam-
pled geometrical states visited by the FS peptide at 250 K. As explained
in Section 2.3.2, these conformations are obtained from a clustering of
the composite data set of runs starting from a straight α-helix. A wide
variety of conformations are illustrated by the cartoon representations,
which portray the central snapshot (taken as the representative
structure for a given cluster) of various states of interest. From Fig. 2,
we infer that the CLD sampling protocol visits a well-connected but
limited subset of states. Consistent with the initial condition and the
assumed conformational preferences of the peptide, this subset is
dominated by helix-rich structures (cartoons for states labeled 1, 2,
30, and 72) and few excursions into non-helical, collapsed states,
e.g., state 45. None of these states is sampled exclusively by CLD. In
contrast, the network for the ϕ-PIGS data, panel (b), indicates access
to a wider range of characteristic structures, many of which are not
sampled by other protocols. Among these, there are several, collapsed
globules, e.g., states 5 and 29, and even structures with significant
β-content, viz., states 9 and 10. As analyzed in more detail below, the
connectivity of the overlapping regions of the network appears qualita-
tively similar to that observed in CLD. However, in ϕ-PIGS, a greater
number of densely sampled states are achieved by an equivalent
amount of data, and therefore the weights of states and transitions in
the helical region are reduced. Indeed, transitions reaching states that
are unique to ϕ-PIGS are poorly sampled indicating that they are
associated with large free energy barriers. In many cases, these states
are visited by just one trajectory.

Comparison of Fig. 2(c) and (b) reveals that the choice of coarse-
grained representation has little influence on the qualitative perfor-
mance of the PIGS algorithm. We stress, however, that the non-helical
states visited by r- and ϕ-PIGS, respectively, have low overlap. As in
panel (b), the network for r-PIGS indicates less sampling in the helical
region but appears to retain information about the relative likelihood
of transitions between states. Conversely, the REX data for 250 K,
panel (d), suggest a sampling domain that is very similar to CLD but
with altered weights of transitions between states. While REX data are
underrepresented in the clustering, we note that only 24 of the 104

largest clusters (84% of the data) are unique to REX. Thus, in summary,
Fig. 2 provides a qualitative picture of the conformational landscape as
explored by the different protocols. Using CLD as the reference, it ap-
pears that PIGS causes a substantial thermodynamic bias, whereas
REX yields biased pathway information. We return to these issues in
Sections 3.2.3 and 3.2.5.

3.2.2. Rate of exploration
While Fig. 2 indicates that PIGS provides quicker coverage of phase

space, this is a qualitative observation that depends heavily on the
clustering procedure and our choices. Due to the α-helical nature of
the peptide, we pursued a different type of coarse-graining relying on
a two-state model at the residue level (see Section 2.3.1). This allows
the definition of 217 states, and we can measure the rate at which new
states are discovered. These rates are plotted in Fig. 3 for different
sampling algorithms and the two temperatures of interest.

As seen in Fig. 3(a), at 290 K, CLD and both PIGS schemes produce a
very similar rate of exploration. At a sampling time of 300 ns per replica,
~30% of all states have been visited. REX uses 8 times less data in
terms of absolute numbers, and this lowers the measured rate.
Correspondingly, the data at 250 K shown in panel (b) show a similar
ratio of ~4 between REX and CLD. However, both ϕ-PIGS and r-PIGS
discover new states at a much higher rate at this lower temperature.
We note that the swapping protocol used in REX creates a mixing of
information, which complicates straightforward comparison. We
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therefore construct another extreme comparison that should favor
REX by bootstrapping the CLD and PIGS data to the number of rep-
licas utilized for REX. This analysis is shown in Fig. 3(c) for 250 K,
and the data clearly support the notion that REX offers no benefits
over CLD for this system and chosen initial condition. Conversely,
both PIGS schemes outperform both REX and CLD reliably. Given
that the two-state model is constructed based on dihedral angle
values, it may be surprising that r-PIGS appears to be more efficient
than ϕ-PIGS at low temperature. However, it should be kept in
mind that the choice of representation for r-PIGS emphasizes back-
bone degrees of freedom, which may explain the small difference.
Fig. S6(a) provides the corresponding analysis at 290 K.

Panel (d) of Fig. 3 contains an illustration of the r-PIGS scheme at
250 K. The color annotation reveals that the RMSD to the straight
α-helix is low for only a single replica at any given time. It is seen clearly
that this particular conformation is almost always exited from by virtue
of a reseeding to a dissimilar structure rather than by unperturbed
evolution. It also emerges that reseedings of two or more replicas tend
to coincide in time. This suggests that the intended detection of overlap-
ping sampling domains, which underlies the reseeding heuristic, is suc-
cessful. Fig. S6 displays analogous plots for some of the other data
sets. In particular, panel (b) of Fig. S6 emphasizes the fast inherent
dynamics at 290 K, which leads to more reseedings and less bias. The

same reasoning as for the straight α-helix holds for any other basin of
attraction. As a result, the average population of any given state is un-
likely to exceed 1/Nr, which will generally result in a thermodynamic
bias. This is discussed next.

3.2.3. Configurational and ensemble bias
We are interested in assessing to what extent the equilibrium

distributions of physical observables differ from protocol to protocol.
In reseeding approaches, the only obvious source of bias is that from
terminating simulations and reseeding with biased initial conditions.
Initial state bias is also inherent to CS. Therefore, the question of bias
is one of time scales, and it relates to the diffuse assumption of recur-
rence (ergodicity) on an observed sampling domain over a finite sample
size [1,66,67]. Thus, it is expected that differences are reduced when
interconversion between states is faster, i.e., we expect all distributions
to be more similar to one another at 290 K than at 250 K.

Panel (a) of Fig. 4 compares histograms of the radius of gyration at
both temperatures for the four samplers. At 250 K, the CLD and REX
protocols generate the same statistics, which is expected. The right
peak represents primarily straight α−helical conformations and
accounts for about half of the overall population. On the contrary,
both PIGS data sets sample distributions that are very similar to
one another but have depleted density at 9.5 Å. This is consistent

Fig. 2. Complex network representation for the FS-peptide at 250 K. Data were gathered from all sampling protocols to define states (see Section 2.3.2). Node diameters are proportional
to the 4th root of the fractional cluster population for each sampler. The size is buffered so that nodes not visited by a given protocol remain visible. The color scheme marks how unique
a state is with respect to a given protocol (see exact definition in Section 2.3.3). Links represent direct transitions as observed along continuous stretches of single trajectories
(see Section 2.3.3). Their width is proportional to the square root of the normalized number of transitions for each sampler (transition probability). Selected, numbered states are
depicted in cartoon representation. (a) Conformational network when using only data from CLD runs. (b) The same as (a) for ϕ-PIGS. (c) The same as (a) for r-PIGS. (d) The same
as (a) for REX.
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with the previous discussion in the context of Fig. 3(d). Importantly,
the bimodal nature of the distributions sampled by CLD and REX is
retained and density is simply shifted to collapsed structures with
radii of gyration around 7.0 Å. These include the disordered globules
seen in Fig. 2. At 290 K (smooth, dashed lines), the bias introduced
by the reseeding procedure of the PIGS samplers is considerably
reduced owing to the faster underlying dynamics. However, bias
remains discernible for this observable. We perform this analysis not
only to reveal bias but also to point out that fundamental characteristics
are preserved despite the bias.

The preservation of the temperature-dependent balance between
chain entropy, helix stability, and solvent properties is illustrated
by an observable that depends less on the population of the straight
α-helix, viz., histograms of residue–residue contacts. Fig. 4(b) shows
that, unlike the radius of gyration histograms, contact number distribu-
tions are similar for all protocols at either temperature. At 290 K, the dif-
ferences are generally marginal. At 250 K, the peaks are shifted slightly
to the left for CLD and REX with respect to the PIGS algorithms, and the
variance is lower, which hints at the reduced diversity of the sampled
ensemble. This suggests that the different topologies sampled by PIGS
replace the local, i→i + 4 contacts of α-helices with other, most likely
nonlocal contacts. This suggestion is confirmed by Fig. 4(c). At 250 K,
the difference in contact probabilities between CLD and PIGS reveals a
dramatic shift from contact patterns indicative of helix-rich states
(e.g., cartoons 1 and 2 in Fig. 2) to nonhelical states. This is true for
both ϕ- and r-PIGS. The greater frequency of distal contacts for the
PIGS data reflects the presence of disordered, globular conformations.
These states are long-lived, which is vaguely suggested by Fig. 3(d),

and which we confirm in Section 3.2.5. Finally, Fig. 4(d) shows the
same analysis as panel (c) for 290 K. Consistent with panels (a) and
(b), the magnitude of the systematic difference in equilibrium distribu-
tions introduced by the PIGS reseedingheuristic is considerably reduced
at the higher temperature. This is because interconversion among states
is faster (see Fig. S6).

It is important for us to dispel concerns about the interpretability of
the thermodynamic ensemble generated by the base sampler when
coupled with the reseeding heuristic. Table 1 indicates that we do not
observe major differences in thermodynamic quantities. Specifically,
the average kinetic and potential energies and associated fluctuations
are generally within error. The invariance of kinetic energies at both
temperatures indicates that integrator stability is not compromised by
the reseeding in PIGS or the swaps in REX. The quantitative significance
of this is also inferred by comparison to data at adjacent temperatures
for the REX scheme. For potential energies, there are significant differ-
ences at 250 K between REX and PIGS illustrated also by the greater
overlap in the average potential energies between PIGS data at 250 K
and REX data at 256 K. This is not surprising due to the depletion of en-
ergetically favorable conformations rich in α-helix content. The gener-
ally larger fluctuations in potential energy for PIGS reflect the greater
diversity of the conformations sampled by PIGS. We note that these
implicit solvent simulations in the canonical ensemble can exhibit
non-Gaussian tails of the potential energy spectrum. For these, it is
difficult to assess what is correct, i.e., variance estimates may change
significantly even by simply increasing the length of CLD simulations.
While the trends appear similar at 290 K compared to 250 K, no
significant differences between samplers are observed.

Fig. 3.Rate of exploration for different samplers and temperatures. (a)Weplot the number of states visited (see Section 2.3.1 for details) as a function of time at 290 K. The REX curve relies
on a data set that is smaller by a factor of 8. (b) The same as (a) for 250 K. The same legend as in (a) applies. (c) To make data comparable to REX, the CLD and PIGS runs are randomly
bootstrapped to 10 sets of 4 replicas without replacement. The resultant envelopes over the 10 sets are plotted as shaded areas. The same legend is used as in (a), and data are shown
for 250 K only. (d) To illustrate the reseeding, we plot the RMSD from a straight α-helical conformation for r-PIGS at 250 K. The color annotation is shown separately for every replica
and for every 20th snapshot (net time resolution is 30 ps). Vertical bars (green) indicate the times of all actual reseedings for this data set.
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In summary, the bias introduced by PIGS primarily influences
the equilibrium statistics of physical observables that are sensitive
to conformation as discussed for Fig. 4. As mentioned before,
we do not address approaches toward snapshot-based reweighting
or rigorous MSM construction for these data in this contribution.
Figs. S7(a)–(c) highlight the population bias at the level of the
states shown in Fig. 2. However, Fig. 2 also suggests that important
state connectivity information is preserved by PIGS, and this is
analyzed next.

3.2.4. Transition path analyses
Describing transition pathways has always been amajor interest and

challenge of protein science as it can suggest mechanisms for, among
others, folding, enzymatic activity, signal transduction, or ligand bind-
ing. Since PIGS does not bias the PES, and sincewe discard any transition
path that is not continuous, i.e., that has been interrupted by a reseeding
event, we expect differences among transition paths relative to CLD to
be caused predominantly by a lack of proper sampling. Figs. S8 and
3(d) emphasize that the actual number of reseeding events is small.

Fig. 4. Comparison of equilibrium statistics for radii of gyration and contacts. (a) Histograms of radii of gyration for the four different data sets at 250 K (solid steps) and 290 K
(dashed, continuous lines). The bin width for the radius of gyration is 0.1 Å. Min/max ranges across 16 blocks are indicated for the REX data by the shaded region. (b) Histograms for
the number of contacts at 250 K (solid steps) and 290 K (dashed, continuous lines). A residue–residue contact was counted if the distance between any two atoms of the two residues
in question was below 5.5 Å. The same legend applies as in (a). (c) Difference in the average contact maps for CLD and PIGS at 250 K. The upper left half-matrix refers to ϕ-PIGS, and
the lower right half-matrix plots the same data for r-PIGS. (d) The same as (c) for 290 K.

Table 1
Average kinetic and potential energies and their standard deviations for the different samplers.

Sampler Mean kinetic energy
(kcal/mol)

Standard deviation of the kinetic energy
(kcal/mol)

Mean potential energy
(kcal/mol)

Standard deviation of the potential energy
(kcal/mol)

CLD at 250 K 170.17 ± 0.05 9.22 ± 0.02 − 4562.4 ± 1.8 9.42 ± 0.33
ϕ-PIGS at 250 K 170.17 ± 0.05 9.22 ± 0.02 − 4559.9 ± 2.5 9.82 ± 0.48
r-PIGS at 250 K 170.17 ± 0.04 9.22 ± 0.02 − 4559.9 ± 2.5 9.93 ± 0.48
REX at 250 K 170.17 ± 0.05 9.21 ± 0.02 − 4563.4 ± 0.5 9.30 ± 0.11
REX at 256 K 174.24 ± 0.05 9.44 ± 0.02 − 4558.9 ± 0.4 9.66 ± 0.10
CLD at 290 K 197.39 ± 0.05 10.69 ± 0.02 − 4527.9 ± 1.7 12.81 ± 0.35
ϕ-PIGS at 290 K 197.39 ± 0.06 10.69 ± 0.02 − 4526.7 ± 1.5 12.81 ± 0.31
r-PIGS at 290 K 197.40 ± 0.06 10.69 ± 0.02 − 4526.6 ± 1.4 12.85 ± 0.32
REX at 290 K 197.38 ± 0.05 10.69 ± 0.02 − 4528.7 ± 0.7 12.44 ± 0.23
REX at 297 K 202.16 ± 0.05 10.95 ± 0.02 − 4521.3 ± 0.8 12.99 ± 0.20

Statistical errors are reported for each quantity andwere obtained by averaging over themean values for different numbers of blocks per temperature (256 for CLD and PIGS; 32 for REX).
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At 250 K, the average lengths of uninterrupted simulation stretches
are 18.9 and 11.9 ns for ϕ- and r-PIGS, respectively, which is more
than two orders of magnitude larger than the values seen for REX
despite fp being identical. Moreover, the average reseeding frequency
is notably higher at the beginning of a PIGS run than toward the end
owing to the identical starting condition.

When speaking of transition pathways, it is practically inevitable to
avoid definitions of states [38]. Defining states may involve somewhat
arbitrary decisions. For Fig. 2 we used the approach described in
Sections 2.3.2 and 2.3.3 to identify and delineate a set of states, and
we analyze only direct transitions between any given pair of states,
which is akin to the local equilibration idea in MSM construction.
Fig. 2 and Movie S1 display only such direct transitions as links in a
network, and suggest a fundamental similarity between CLD and PIGS
for the common sampling domain. Conversely, REX results differ in
terms of relative, statistical weights of transitions. This can be expected
due to a bias toward shorter time scales, which results from discarding
stretches of trajectory interrupted by swaps. However, the analysis may
be affected by further subtleties of the REX protocol.

Table 2 provides quantitative evidence for this qualitative result.
We find that the statistical weight of prominent transitions differs
significantly for the REX protocol with respect to all other samplers.
With the exception of the transition between state 2 and 30, the ranks
for REX differ considerably. If this were solely a consequence of losing
data on longer paths, one would not expect certain transitions to be
sampled much more in absolute numbers, e.g., from state 2 to 72.
These data hint that REX may alter state connectivity in more funda-
mental ways, for example by emphasizing transitions that are naturally
shorter, yet are not particularly probable in unperturbed trajectories.
In Table 2, we also provide further statistics for transition path times.
Generally, the PIGS data sets seem to contain more outliers toward
long transition times than CLD, which is indicated by greater values
for both averages and standard deviations. This is noticeable in particu-
lar for the transition between state 2 and 72. Conversely, the average
transition path times are shorter for REX when compared to CLD,
which is consistent with the reasoning above.

Panels (a)–(c) of Fig. 5 reveal that three prominent transitions yield
cumulative distribution functions for transition path times that show
little difference between CLD and either PIGS scheme. For the transition
between state 61 and 72, panel (a), REX samples only a few events that
appear to follow a similar distribution. The transition between state 36
and 60, panel (c), is depleted entirely for REX despite these transition
path times being shortest among the ones investigated. This is further
evidence toward the notion that REX fundamentally alters network
properties. The expected results for REX, viz., oversampling of short
transition paths, are seen for the remaining transitions, which both

involve the straight α-helix as one of the two states. In Fig. 5(d), the
transition between state 2 and 72, which is explored often by REX,
yields distributions that appear to differ quantitatively for all 4 cases.
The corresponding statistics for the transition path times in Table 2
confirm this heterogeneity.

Besides insufficient sampling, we can think of two main sources for
the type of heterogeneity seen in Fig. 5(d). First, theremight be different
types of paths available and their likelihoods may depend on the
sampling protocol. Second, the definitions of clusters as states could
mask heterogeneous subpopulations, i.e., a given state as sampled by
PIGS may differ subtly from the set of snapshots classified to be the
same state but sampled by CLD.

In order to address these issues, we performed principal component
analyses on the partitions of data representing the two states and all
direct transitions connecting them (see Section 2.3.3 for details).
In Fig. 6, we can see that a projection of the data onto the two principal
components accounting for the largest total variance gives an informa-
tive plot. The two end states are connected by a region of continuous
density. For CLD, panel (a), this appears to be the main area of prob-
ability flow and we defined an ad hoc separator as indicated by the
rectangle. Partially overlapping regions of high density outside of
this rectangle are seen for both PIGS data sets. We stress that the un-
derlying histogram effectively weighs paths by their lengths in time.
This suggests that some of the direct transitions involve extensive
dwell times in areas not characterized by us as states. In fact, we
can count the number of paths passing through the rectangle, and
these statistics are reported in Fig. 6. Indeed, the majority of direct
transitions for panels (a)–(c) pass through the separator. The drastic
exception is REX for which 70/78 transitions appear to skip directly
from one state to the other.

The corresponding analyses for the other three cases in Table 2 and
Fig. 5 is provided as Figs. S9–S11.Wenote that in all cases the variance en-
capsulated by the first two components is sufficiently large to justify this
projection approach (see Table 2). Similarly, the distributions of the
points corresponding to the end states themselves are always similar for
all four data sets indicating that ambiguities in state annotation do not ex-
plain heterogeneity. In summary, there is little reason to believe that
these PIGS simulations bias transition pathways for the FS peptide. This
is consistent with the low average reseeding rate shown in Fig. S8. Con-
versely, the REX data must be treated with caution. Obtaining converged
data on transition paths from equilibrium simulations is difficult for com-
plex systems, and insufficient samplingmaymask systematic differences.

3.2.5. Dependence on starting structure
As a final point of analysis, we wish to address the following,

possible concerns. First, one may wonder whether those clusters

Table 2
Transition path statistics.

Transition Sampler Number of events Rank Mean time (ns) Standard deviation (ns) Variance in 1st and 2nd PC

2–30 CLD 108 11 0.47 0.37 75.6%
ϕ-PIGS 27 18 0.84 1.23
r-PIGS 22 22 0.38 0.32
REX 28 12 0.27 0.25

2–72 CLD 27 39 0.86 0.63 74.2%
ϕ-PIGS 12 40 5.08 5.80
r-PIGS 13 31 1.83 2.17
REX 78 6 0.33 0.31

36–60 CLD 49 20 0.23 0.52 55.1%
ϕ-PIGS 13 36 0.30 0.66
r-PIGS 47 8 0.25 0.48
REX 0 – – –

61–72 CLD 163 9 0.33 0.41 46.9%
ϕ-PIGS 77 3 0.31 0.32
r-PIGS 77 3 0.37 0.44
REX 7 44 0.30 0.26

All data were combined for both possible directions. The ‘Rank’ column indicates the rank of the transition in question in lists sorted individually for each sampler by numbers of events.
The last column reports the percentage of the standard deviation of the underlying data that is encapsulated by the first two principal components (see notes on PCA in Section 2.3.3).
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sampled exclusively by PIGS as seen in Figs. 2 and S7 actually
correspond to proper metastable states. Second, we want to know
how much the resultant distributions depend on the initial state
for all 3 samplers. Both questions can be addressed by repeating sim-
ulations with a different starting configuration. Here, we restricted
ourselves to a temperature of 250 K and r-PIGS, REX, and CS. The
starting configuration is taken as a collapsed globule sampled
uniquely by ϕ-PIGS in the original data set (similar to cartoon
(5) in Fig. 2).

Fig. 7 shows an analysis comparable to that in Fig. 3 for these data,
i.e., we quantify exploration rate and memory loss. We suppose that
the starting structure is a state that is metastable and kinetically distant
from theα-helical domain.Wedo not know its correct statistical weight
due to CLD and REX not having found this structure. Fig. 7(a) plots, for
all replicas, the RMSD to the starting structure as a function of time for
CLD. Clearly, the state is metastable in CLD and the life time distribution
appears to have long tails as indicated by one of the replicas never
escaping from it. This confirms our aforementioned assumptions. The
net sampling weight should be low based on these data. For r-PIGS,
which did not encounter this structure before either, we obtain consid-
erably faster escape. After ~50 ns, the picture is analogous to that in
Fig. 3(d), i.e., on average only a single replica continues to explore this
basin at a given point in time. This highlights again the efficacy of the
reseeding heuristic in avoiding overlap of sampling domains.

Panel (c) of Fig. 7 plots the early time course of the maximum
and minimum deviations from the globular starting structure and the

α-helix, respectively. The first replica to sample the straight helix in
CLD does so after ~25 ns. The corresponding number for both r-PIGS
and REX is below 10 ns. Similar conclusions hold for the maximum
deviation from the starting conformation. The performance of REX is
remarkable as it relies on considerably less data. The stochasticity of
escape suggested by panel (a) seems to be circumvented.We conjecture
that the starting structure, due to its slightly inferior energetic stability,
is rapidly and systematically swapped toward higher temperatures. The
collapse constraint is substantially weakened, and helix-rich states form
quickly. These are then swapped back to low temperatures. Essentially,
the high temperature replicas provide kinetic shortcuts as intended
by the protocol. However, this comes at the cost of not sampling
appropriate pathways.

Fig. S12 provides an overview that is analogous to Fig. 2. We can see
that REXhardly samples unique states. In fact, the samplingdomain is as
restricted as that when starting from the α-helix. Conversely, there is a
large increase in states sampled uniquely by CLD (see also Fig. S13).
Probably, these are encountered “along the way,” i.e., they result from
undirected exploration of a larger fraction of phase space than when
starting from the helix. Thepicture for r-PIGS continues to be the richest.
These observations are quantified in Fig. 7(d). Plotting the data in direct
comparison to those in Fig. 3(a), we can confirm the better coverage of
CLD when starting from the globule. The indifference of REX is also
visible straight away. Lastly, the exploration rate for r-PIGS, while
superior throughout, lags behind when comparing to the run starting
from the helix. We believe that this result simply reflects that PIGS is

Fig. 5.Cumulative probability densities for transition path times for 4 selected transitions. Eachpanel reports two representative cartoons (central snapshots) for the clusters used to define
the states for the transition in question. The legend in (c) applies to all panels. (a) Cumulative probability density for the times it takes to reach one state from the other irrespective of
direction. These are the data for states 61 and 72. (b) The same as (a) for transitions between state 2 and 30. (c) The same as (a) for transitions between state 60 and 36. (d) The same
as (a) for transitions between state 2 and 72.
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not designed to escape from narrowminima surrounded by large, ener-
getic barriers. This also emerges from comparison of Figs. 7(b) and 3(d).

We conclude the results by pointing out that the structural ensem-
bles obtained after discarding the first half of the data exhibit a high
level of similarity between runs started from different initial conforma-
tions. Analyzed in terms of the radius of gyration, Fig. S14 shows that
this holds for all samplers. Small deviations in the expected direction,
e.g., less population of the straight helix when starting from the globule,
are seen for CLD and REX. In view of Figs. 7 and S12, it may be surprising
that REX retains bias. The thermodynamic bias seen for r-PIGS in
Fig. 4(a) is quantitatively preserved in Fig. S14(b). This level of conver-
gence suggests that most time scales that we probe in the simulations
are faster than the 312 ns of simulation time per replica.

4. Discussion and conclusions

In this contribution,we introduce a reseedingheuristic formolecular
simulations. For two different systems, the heuristic is demonstrated to
increase the rate of exploration (Figs. 1, 3, 7, S3, S4, and S6) leading to
better coverage of phase space (Figs. 2 and S12). This is despite the
effective reseeding rate being surprisingly low (Figs. 3(d), 7(b), and
S8). Consequently, the algorithm is able to preserve useful information
about pathways of interconversion (Figs. 2, 5, 6, and S9–S12). If time

scales that are orders of magnitude slower than fp dominate the system
dynamics (data at 250 K), even a small number of reseeding events will
accumulate considerable thermodynamic bias (Figs. 4 and S14). The
bias is reduced considerably for the FS peptide at 290 K (Fig. 4). As dem-
onstrated by Figs. 3(a) and S6(a), this corresponds to a case where either
REX or PIGS provides no benefit over CLD. Since CLD preserves equilibri-
um sampling weights and pathway information maximally, the use of
PIGS and in particular of REX is wasteful (see Fig. S15 for the correspond-
ing state network). This manuscript is not concernedwith the removal of
the thermodynamic bias introduced by PIGS. We note that the bias is not
of a unique type, i.e., it can be rephrased as the task of extracting equilib-
rium information from short trajectories of heterogeneous lengthswhose
starting points are not drawn with the correct Boltzmann weights. Strat-
egies for this problem are available [45,68,69].

We believe that the favorable properties of our approach can be
summarized as follows.

• It is unsupervised beyond specifying fixed parameters. In this context,
the demonstrated robustness with respect to parameter choices is
important (see Fig. S4 and the comparison of ϕ-PIGS and r-PIGS for
the FS peptide).

• PIGS is parallel in a way that provides synergistic benefits (see Figs. 1
and S3). This means that the width of available computing resources

Fig. 6. Projection of transition paths between state 2 and 72 onto the space defined by the first two principal components (see Section 2.3.3). The negative logarithms of the individual
histograms for the four different protocols are plotted as color maps. Bins with no counts are shown in white, and the bin width is equal to 1 Å for both components. Cartoons show
representative structures for the two states connected by the transition. A total number of 50 points belonging explicitly to states 2 and 72 as sampled by the respective protocol are
shown as blue and purple dots, respectively. The rectangle in each panel is identical and highlights an area defined as a separator region for CLD. Relevant statistics are also reported.
(a) Histogram and statistics for the subset of the transition path data sampled by CLD. (b) The same as (a) for ϕ-PIGS. (c) The same as (a) for r-PIGS. (d) The same as (a) for REX.
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can bemeaningfully exploited. In this regard, we have also performed
a test for the FS peptide (see Fig. S16) confirming the results for the
model system. Scalability with the number of replicas is critical for
this property to hold, and we establish it conceptually.

• It does not differ in I/O load from conventional sampling, and all
communication requirements are restricted to the reseeding points
as in REX.

• Despite relying on few reseeding events, PIGS speeds up exploration
rates for the systems under study. The data in Section 3.2.5 suggest
that this advantage is slightly reduced for energetic barriers. This
is the opposite behavior compared to REX [30], which makes
the methods somewhat complementary. Pathway information is
preserved, which is directly useful for MSM construction and the
extraction of rates.

• We believe that the heuristic is both conceptually and practically
useful for a wide spectrum of molecular simulations. We expect the
choice of representation, although not tested directly here, to be of
value in targeting specific research questions for complex systems.

As such, we hope that PIGS will be a useful addition to the toolkit
available to molecular dynamics practitioners. We are currently
investigating the possibility of post-processing the trajectories sam-
pled by PIGS to extract realistic estimates of both equilibrium statistics
and long time scale dynamics without having to perform additional
simulations. At present, the thermodynamic bias is a caveat inasmuch
as one accepts the CLD or REX results as free of initial state bias
(see Fig. S14). As discussed in Section 3.2.3, this question is ultimately
linked to diffuse notions of recurrence that have to pragmatically
replace the fundamental idea of the ergodic hypothesis. For the FS

peptide, the fact that the sampling overlap between data sets is low
for metastable states that are far from the main sampling domain
indicates that simulation convergence holds at most for low-resolution
projections such as the radius of gyration or net helicity. The dilemma
of having to restrict conclusions to an actual sampling domain [66],
whether discovered by unbiased simulations or defined by reaction
coordinates, is a profound one. Indeed, for systems without analytical
results, we can at most falsify an assertion of convergence [70].

In simulations of folded and/or assembled (macro)molecules,
starting structures cannot be made random. This increases the chance
of masking errors because one of themost stringent and useful falsifica-
tion tests of convergence is taken away, i.e., assessing the similarity of
results when using truly independent initial configurations [65,71].
Unquantifiable errors of this type lead to ambiguity, which is arguably
inherent to most applied molecular dynamics studies. It is desirable
to reduce this ambiguity, and this motivates the development and
application of methods capable of discovering new metastable states
in unsupervised fashion. PIGS is one such algorithm.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbagen.2014.08.013.
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Fig. 7. Dependence on starting conformation at 250 K. (a) We plot the RMSD values as a function of time with respect to the starting structure, viz., a globular state free of secondary
structure. The time resolution is 30 ps. Data are shown for all 32 replicas for CLD with the color code indicated on the right. (b) The same as (a) for r-PIGS. The same color legend applies.
In addition, the actual reseeding times are indicated as green, vertical bars as in Fig. 3(d). (c)We show as solid lines theminimumRMSD to the straightα-helix as a function of time for CLD,
r-PIGS, and REX. These data are cumulative, i.e., they correspond to the overall minimum across all replicas or runs (REX) up to the indicated time. The dashed lines represent analogous
values for the maximum RMSD to the starting structure. (d) Exploration rates for CLD, REX, and r-PIGS. The plot includes the corresponding data from Fig. 3(b) to facilitate comparison.
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